基于Headless构建高可用spark+pyspark集群

1、创建Headless Service服务

Headless 服务类型并不分配容器云虚拟 IP,而是直接暴露所属 Pod 的 DNS 记录。没有默认负载均衡器,可直接访问 Pod IP 地址。因此,当我们需要与集群内真实的 Pod IP 地址进行直接交互时,Headless 服务就很有用。

其中Service的关键配置如下:clusterIP: None,不让其获取clusterIP , DNS解析的时候直接走pod。

bash 复制代码
---
kind: Service
apiVersion: v1
metadata:
  name: ecc-spark-service
  namespace: ecc-spark-cluster
spec:
  clusterIP: None
  ports:
    - port: 7077
      protocol: TCP
      targetPort: 7077
      name: spark
    - port: 10000
      protocol: TCP
      targetPort: 10000
      name: thrift-server-tcp
    - port: 8080
      targetPort: 8080
      name: http
    - port: 45970
      protocol: TCP
      targetPort: 45970
      name: thrift-server-driver-tcp  
    - port: 45980
      protocol: TCP
      targetPort: 45980
      name: thrift-server-blockmanager-tcp    
    - port: 4040
      protocol: TCP
      targetPort: 4040
      name: thrift-server-tasks-tcp              
  selector:
    app: ecc-spark-service

EOF

Service的完全域名: ecc-spark-service.ecc-spark-cluster.svc.cluster.local

headless service的完全域名: headless-service.ecc-spark-cluster.svc.cluster.local

在容器里面ping 完全域名, service解析出的地址是clusterIP,headless service 解析出来的地址是 pod IP。

2、构建spark集群

2.1 、创建spark master

spark master分为两个部分,一个是类型为ReplicationController的主体,命名为ecc-spark-master.yaml,另一部分为一个service,暴露master的7077端口给slave使用。

bash 复制代码
#如下是把thriftserver部署在master节点,则需要暴露thriftserver端口、driver端口、
#blockmanager端口服务,以提供worker节点executor与driver交互.
cat >ecc-spark-master.yaml <<EOF
kind: Deployment
apiVersion: apps/v1
metadata:
  name: ecc-spark-master
  namespace: ecc-spark-cluster
  labels:
    app: ecc-spark-master
spec:
  replicas: 1
  selector:
    matchLabels:
      app: ecc-spark-master
  template:
    metadata:
      labels:
        app: ecc-spark-master
    spec:
      serviceAccountName: spark-cdp
      securityContext: {}
      dnsPolicy: ClusterFirst
      hostname: ecc-spark-master
      containers:
        - name: ecc-spark-master
          image: spark:3.4.1
          imagePullPolicy: IfNotPresent
          command: ["/bin/sh"]
          args: ["-c","sh /opt/spark/sbin/start-master.sh && tail -f /opt/spark/logs/spark--org.apache.spark.deploy.master.Master-1-*"]
          ports:
            - containerPort: 7077
            - containerPort: 8080
          volumeMounts:
            - mountPath: /opt/usrjars/
              name: ecc-spark-pvc
          livenessProbe:
            failureThreshold: 9
            initialDelaySeconds: 2
            periodSeconds: 15
            successThreshold: 1
            tcpSocket:
              port: 8080
            timeoutSeconds: 10
          resources:
            requests:
              cpu: "2"
              memory: "6Gi"
            limits:
              cpu: "2"
              memory: "6Gi"
         - env:
            - SPARK_LOCAL_DIRS
              value: "/odsdata/sparkdirs/"             
      volumes:
        - name: ecc-spark-pvc
          persistentVolumeClaim:
            claimName: ecc-spark-pvc-static

2.2、创建spark worker

在启动spark worker脚本中需要传入master的地址,在容器云kubernetes dns且设置了service的缘故,可以通过ecc-spark-master.ecc-spark-cluster.svc.cluster.local:7077访问。

bash 复制代码
cat >ecc-spark-worker.yaml <<EOF
kind: Deployment
apiVersion: apps/v1
metadata:
  name: ecc-spark-worker
  namespace: ecc-spark-cluster
  labels:
    app: ecc-spark-worker
spec:
  replicas: 1
  selector:
    matchLabels:
      app: ecc-spark-worker
  template:
    metadata:
      labels:
        app: ecc-spark-worker
    spec:
      serviceAccountName: spark-cdp
      securityContext: {}
      dnsPolicy: ClusterFirst
      hostname: ecc-spark-worker
      containers:
        - name: ecc-spark-worker
          image: spark:3.4.1
          imagePullPolicy: IfNotPresent
          command: ["/bin/sh"]
          args: ["-c","sh /opt/spark/sbin/start-worker.sh spark://ecc-spark-master.ecc-spark-cluster.svc.cluster.local:7077;tail -f /opt/spark/logs/spark--org.apache.spark.deploy.worker.Worker*"]
          ports:
            - containerPort: 8081
          volumeMounts:
            - mountPath: /opt/usrjars/
              name: ecc-spark-pvc
          resources:
            requests:
              cpu: "2"
              memory: "2Gi"
            limits:
              cpu: "2"
              memory: "4Gi"
        - env:
            - SPARK_LOCAL_DIRS
              value: "/odsdata/sparkdirs/"              
      volumes:
        - name: ecc-spark-pvc
          persistentVolumeClaim:
            claimName: ecc-spark-pvc-static

EOF

2.3 构建pyspark提交环境

python 复制代码
import json
import flask
from flask import Flask
from concurrent.futures import ThreadPoolExecutor

app = Flask(__name__)
pool = ThreadPoolExecutor(max_workers=8)

@app.route('/')
def hello_world():  # put application's code here
    return 'Hello World!'

@app.route('/downloadCode', methods=['post'])
def download_file():
    model_id = flask.request.json.get('modelId')
    print(model_id)
    """
    异步提交任务:pool.submit()
    """
    return json.dumps(0, ensure_ascii=False)

@app.route('/modelRun', methods=['post'])
def model_run():
    """
    异步提交任务:pool.submit()
    """
    return json.dumps(0, ensure_ascii=False)

if __name__ == '__main__':
    app.run()
bash 复制代码
spark@c67e6477b2f1:/opt/spark$ python3
Python 3.8.10 (default, May 26 2023, 14:05:08) 
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 
>>> 

将python的调用整合到:start-master.sh 文件末尾启动调用,便可以通过k8s暴露spark-master的F5端口实现http调用。

3、使用spark-operator安装spark集群方式

可以参考阿里云文章:搭建Spark应用

相关推荐
zhang988000013 分钟前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
老蒋新思维19 分钟前
存量竞争下的破局之道:品牌与IP的双引擎策略|创客匠人
大数据·网络·知识付费·创客匠人·知识变现
数据慢想2 小时前
从2小时到3分钟:Spark SQL多维分析性能优化实战
spark
Lx3522 小时前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续5 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB5 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
写bug写bug5 小时前
分布式锁的使用场景和常见实现(下)
分布式·后端·面试
最初的↘那颗心5 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05237 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch