【MATLAB源码-第62期】基于蜣螂优化算法(DBO)的无人机三维地图路径规划,输出最短路径和适应度曲线。

操作环境:

MATLAB 2022a

1、算法描述

蜣螂优化算法(Dung Beetle Optimization, DBO)是一种模拟蜣螂在寻找食物和进行导航的过程的优化算法。蜣螂是一种能够将粪球滚到合适地点的昆虫,它们利用天空中的光线和自身的感知能力来确定方向。这个过程被用作一种优化策略,可以用来解决各种数学和工程问题。下面是蜣螂优化算法的各个步骤的详细描述:

1. 初始化

  • 参数设置:设定算法需要的参数,如蜣螂的数量、最大迭代次数、学习因子等。
  • 初始解的生成:随机生成一组蜣螂的位置,这些位置代表了潜在的解。

2. 评估

  • 适应度计算:根据问题的目标函数,计算每个蜣螂当前位置的适应度值。

3. 寻找最优解

  • 个体最优解更新:每个蜣螂根据其历史最优位置和当前位置,更新其个体最优解。
  • 全局最优解更新:所有蜣螂中,选择适应度最好的位置作为全局最优解。

4. 更新位置

  • 速度和位置更新:根据蜣螂的当前速度、个体最优解和全局最优解,更新蜣螂的速度和位置。这里通常会引入一些随机因素来增加算法的探索能力。

5. 检查边界

  • 边界处理:确保蜣螂的新位置在问题定义的可行域内,如果越界则进行调整。

6. 迭代

  • 终止条件判断:检查是否满足算法的终止条件,如达到最大迭代次数或解的质量已足够好。
  • 返回结果或继续迭代:如果满足终止条件,则输出当前的最优解;如果不满足,返回到步骤2继续迭代。

7. 结果输出

  • 输出最优解:将找到的最优解和其对应的适应度值输出。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

V

点击下方名片

相关推荐
向宇it8 分钟前
【从零开始入门unity游戏开发之——unity篇01】unity6基础入门开篇——游戏引擎是什么、主流的游戏引擎、为什么选择Unity
开发语言·unity·c#·游戏引擎
是娜个二叉树!25 分钟前
图像处理基础 | 格式转换.rgb转.jpg 灰度图 python
开发语言·python
Schwertlilien28 分钟前
图像处理-Ch5-图像复原与重建
c语言·开发语言·机器学习
liuyunshengsir31 分钟前
Squid代理服务器的安装使用
开发语言·php
只做开心事40 分钟前
C++之红黑树模拟实现
开发语言·c++
很楠不爱1 小时前
项目实战——高并发内存池
开发语言·项目实战
程序员buddha2 小时前
C语言从入门到放弃教程
c语言·开发语言
程序员老冯头2 小时前
第十五章 C++ 数组
开发语言·c++·算法
南七澄江2 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai
IT猿手3 小时前
SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
开发语言·人工智能·matlab·智能优化算法