刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)

1.运行效果:

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损)_哔哩哔哩_bilibili

环境库:

NumPy 版本: 1.19.4

Pandas 版本: 0.23.4

Matplotlib 版本: 2.2.3

Keras 版本: 2.4.0

TensorFlow 版本: 2.4.0

sklearn 版本: 0.19.2

如果库版本不一样, 一般也可以运行,这里展示我运行时候的库版本,是为了防止你万一在你的电脑上面运行不了,可以按照我的库版本进行安装并运行

2.数据集介绍

试验数据来源于美国纽约预测与健康管理学 会(PHM)2010年高 速 数 控 机 床 刀 具 健 康 预 测 竞 赛的开放数据。数据集下载链接

复制代码
链接:https://pan.baidu.com/s/17GbX52SlPScsv0G7fDp5dQ 
提取码:4561

实验条件如表格 所示

实验数据获取的形式是: 试验在上述切削条件下重复进行 6 次全寿命周期试验。端面铣削材料为正方形, 每次走刀端

面铣的长度为 108mm 且 每 次 走 刀 时 间 相 等 , 每次走刀后测量刀具的后刀面磨损量。试验监测数据有x、y 、 z 三向

铣削力信号 , x 、 y 、 z 三向铣削振动信号以及声发射均方根值。

6次的数据集中 3次实验中有测量铣刀的磨损量,其他3次没有测量,作为比赛的测试集。

复制代码
文件c1、c4、c6为训练数据,文件c2、c3、c5为测试数据:

第1列:X维力(N)
第2列:Y维力(N)
第3列:Z维力(N)
第4列:X维振动(g)
第5列:Y维振动(g)
第6列:Z维振动(g)
第7列:AE-RMS (V)

刀具主轴转速为10400 RPM;进给速度1555 mm/min;切割Y深度(径向)为0.125 mm;
Z轴向切割深度为0.2 mm。数据以50khz /通道采集。

系统测量的实验条件和实验方式如下所示:

3.本次项目介绍

c1为数据集

version.py是查看你本地环境库的版本,为了方便你运行代码写的脚本

MSCNN_LSTM_Attention.py是读取原始数据,预处理,磨损状态分类的主程序。

数据量较大,因为本地电脑配置一般, 所以只用了c1数据集进行实验,只需要修改数据集路径,也可以调用c2-c6数据集。

数据集一共有315个表格

数据集开始位置

数据集截止位置:

参考知网论文:《基于改进卷积门控循环神经网络的刀具磨损状态识别》一文中,对初期磨损、正常磨损、急剧磨损的划分,取1-54为初期磨损,55-205为正常磨损、206-315为急剧磨损

数据预处理:

采用的数据是每个表格的第四列数据,即X维振动信号。如果想做数据融合(即把Y维和Z维振动信号也用上,可以私信定制)

对原始数据归一化后,采用10000的样本长度不重叠切割样本, 这次为做平衡数据集下的实验,每种状态取1000个样本。

实验部分:

训练集与测试集的比例:4:1

批量:64

优化器:Adam

学习率:0.001

模型(MSCNN_LSTM_Attention,每个样本的形状原为(10000,1),但是为了让网络训练更快,目前代码中变形为(250,40),两个输入形式在代码中都可以使用,只要稍微改动一下即可

特征(训练集和测试集)形状

标签(训练集和测试集)形状

4.效果(测试集准确率100个epoch训练完为94.67%)

测试集混淆矩阵 (以百分比形式展示)

测试集混淆矩阵(以个数为展示)

对项目感兴趣的,可以关注最后一行

复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
from sklearn import __version__ as sklearn_version
from matplotlib import __version__ as matplotlib_version

print(f"NumPy 版本: {np.__version__}")
print(f"Pandas 版本: {pd.__version__}")
print(f"Matplotlib 版本: {matplotlib_version}")
print(f"Keras 版本: {keras.__version__}")
print(f"TensorFlow 版本: {tf.__version__}")
print(f"sklearn  版本: {sklearn_version}")
#数据集和代码压缩包:https://mbd.pub/o/bread/ZZWblphr
相关推荐
TG:@yunlaoda360 云老大1 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗1 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄4 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭4 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t5 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域5 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
开利网络5 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师6 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
熙梦数字化7 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
刘海东刘海东7 小时前
逻辑方程结构图语言的机器实现(草稿)
人工智能