【API篇】十一、Flink水位线传递与迟到数据处理

文章目录

1、水位线传递

上游task处理完水位线,时钟改变后,要把数据和当前水位线继续往下游算子的task发送。当一个任务接收到多个上游并行任务传递来的水位线时,以最小的那个作为当前任务的事件时钟。如图:上游算子并行度为4,:

java 复制代码
- 第一波的2.4.3.6传递到下游task,取2
- 其中一个上游task的数据4到了,传递到下游,4.4.3.6,此时,水位线被更新为最小的3
- 其中一个上游task的7到了,下游task为4.7.3.6,最小仍为3,不更新
- 上游task的6到下游,下游为4.7.6.6,最小为4,水位线再更新

总结:

  • 接收到上游多个,取最小
  • 往下游多个发送,广播

使用上篇的乱序流来查看水位线的传递,这次把并行度不能再是1,设置为2

java 复制代码
public class WatermarkOutOfOrdernessDemo {
    public static void main(String[] args) throws Exception {
    
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        env.setParallelism(2);

        SingleOutputStreamOperator<WaterSensor> sensorDS = env
                .socketTextStream("node01", 9527)
                .map(new WaterSensorMapFunction());

        // TODO 1.定义Watermark策略
        WatermarkStrategy<WaterSensor> watermarkStrategy = WatermarkStrategy
                // 1.1 指定watermark生成:乱序的,等待3s
                .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                // 1.2 指定 时间戳分配器,从数据中提取
                .withTimestampAssigner(
                        (element, recordTimestamp) -> {
                            // 返回的时间戳,要 毫秒
                            System.out.println("数据=" + element + ",recordTs=" + recordTimestamp);
                            return element.getTs() * 1000L;
                        });

        // TODO 2. 指定 watermark策略
        SingleOutputStreamOperator<WaterSensor> sensorDSwithWatermark = sensorDS.assignTimestampsAndWatermarks(watermarkStrategy);

        sensorDSwithWatermark.keyBy(sensor -> sensor.getId())
                // TODO 3.使用 事件时间语义 的窗口
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .process(
                        new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {

                            @Override
                            public void process(String s, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {
                                long startTs = context.window().getStart();
                                long endTs = context.window().getEnd();
                                String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
                                String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");

                                long count = elements.spliterator().estimateSize();

                                out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());
                            }
                        }
                )
                .print();

        env.execute();
    }
}

执行:

画个示意图:

2、水位线设置空闲等待

结合上图,上面是并行度为2,数据进来了会轮询到两个上游task,如果此时一个上游task一直没有数据进来,而当前Task是以最小的那个作为当前任务的事件时钟,就会导致下游接收的Task时钟一直为起始值而无法推进,进而导致窗口无法触发。

java 复制代码
public class WatermarkIdlenessDemo {

    public static void main(String[] args) throws Exception {
    
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(2);

        //  MyPartitioner是自定义分区器:数据%分区数,只输入奇数,都只会去往map的一个子任务,余数总为1,0.1两个map的task总去1
        SingleOutputStreamOperator<Integer> socketDS = env
                .socketTextStream("hadoop102", 7777)
                .partitionCustom(new MyPartitioner(), r -> r)
                .map(r -> Integer.parseInt(r))
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy
                                .<Integer>forMonotonousTimestamps()
                                .withTimestampAssigner((r, ts) -> r * 1000L)
                                
                );


        // 分成两组: 奇数一组,偶数一组 , 开10s的事件时间滚动窗口
        socketDS
                .keyBy(r -> r % 2)
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .process(new ProcessWindowFunction<Integer, String, Integer, TimeWindow>() {
                    @Override
                    public void process(Integer integer, Context context, Iterable<Integer> elements, Collector<String> out) throws Exception {
                        long startTs = context.window().getStart();
                        long endTs = context.window().getEnd();
                        String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
                        String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");

                        long count = elements.spliterator().estimateSize();

                        out.collect("key=" + integer + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());

                    }
                })
                .print();


        env.execute();
    }
}

运行:

分析:以上demo中,为了实现数据总流向一个子task,用了自定义分区器:

java 复制代码
.partitionCustom(new MyPartitioner(), r -> r)

以输出数据为key,key除以并行度2区域为分区逻辑,如果我一直输入奇数,分区值就一直为1,就可以实现数据只流向其中一个子task。流向下游算子时,一个task始终没数据,导致取小的时候一直取到了没数据的原始time,时钟无法更新,窗口无法触发。此时就需要设置最大空闲时间,太久没数据来时,就不让它参与比较。

java 复制代码
.withIdleness(Duration.ofSeconds(5))  //空闲等待5s

此时,输入到9时,已到5s时间,不再比较另一个没数据的task,11一进来,立马触发窗口

3、迟到数据处理:窗口允许迟到

前面为了解决乱序流,提出了延迟的概念:

java 复制代码
WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(3));

以上,即窗口延迟触发3秒,即让水位线的推进值 = 当前值 - 3,以便争取为乱序数据更多的时间进入窗口。但当延迟完成,窗口触发计算和关闭后,再来的属于已关闭窗口的数据就不会被统计在内了,这些数据也成为迟到数据。(本来8.30上课,老师等等家远的学生,说8.40开始讲课,结果你却9.00才到,那就门口站着取,别听了,类比数据不会再被对应窗口统计)

Flink窗口允许迟到数据,即触发窗口后,会先计算当前结果,但不关闭窗口(触发计算和关窗是两个动作)。 以后每来一条迟到数据,就触发一次这条数据所在窗口的增量计算。直到水位线被推进到了窗口结束时间 + 推迟时间。

注意区分延迟和推迟,延迟是老师等你到8.40上课(触发计算时间延长了),推迟则是,8.40课开始上了(触发计算了),但教室门不关,你在开始上课后(开始上课类比触发计算)10分钟的铃声没响之前(类比推迟时间为10分钟),能到的话,你依旧可以进教室听课。如果过了推迟时间,你仍没有到,那就窗口关闭,教室关门,你去网吧游荡吧。总结就是:

  • 延迟时间,操作的是触发计算的时间,用来处理乱序问题
  • 推迟时间,操作的是触发关窗的时间,用来处理迟到数据
java 复制代码
.window(TumblingEventTimeWindows.of(Time.seconds(10)))  //窗口10s
.allowedLateness(Time.seconds(3))  //触发关窗延迟3秒

还是乱序流的例子,多一个allowedLateness

java 复制代码
public class WatermarkOutOfOrdernessDemo {
    public static void main(String[] args) throws Exception {
    
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        env.setParallelism(1);

        SingleOutputStreamOperator<WaterSensor> sensorDS = env
                .socketTextStream("node01", 9527)
                .map(new WaterSensorMapFunction());

        // TODO 1.定义Watermark策略
        WatermarkStrategy<WaterSensor> watermarkStrategy = WatermarkStrategy
                // 1.1 指定watermark生成:乱序的,等待3s
                .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                // 1.2 指定 时间戳分配器,从数据中提取
                .withTimestampAssigner(
                        (element, recordTimestamp) -> {
                            // 返回的时间戳,要 毫秒
                            return element.getTs() * 1000L;
                        });

        // TODO 2. 指定 watermark策略
        SingleOutputStreamOperator<WaterSensor> sensorDSwithWatermark = sensorDS.assignTimestampsAndWatermarks(watermarkStrategy);

        sensorDSwithWatermark.keyBy(sensor -> sensor.getId())
                // TODO 3.使用 事件时间语义 的窗口
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .allowedLateness(Time.seconds(3))
                .process(
                        new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {

                            @Override
                            public void process(String s, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {
                                long startTs = context.window().getStart();
                                long endTs = context.window().getEnd();
                                String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
                                String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");

                                long count = elements.spliterator().estimateSize();

                                out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());
                            }
                        }
                )
                .print();

        env.execute();
    }
}

此时窗口为10s,延迟3s触发计算,窗口结束时间 + 推迟时间才触发关闭,即水位线到达10+3=13s时,才触发关窗。在水位线未被推到13前,对于迟到的数据,会再次触发计算,且是来一条,触发一次计算。关窗后,再来迟到数据就在不管了,不会触发计算。

这也和前面整理的窗口生命周期对上了:计算和关窗实际是两个动作,窗口销毁的时机(关窗)是在时间进展 >= 窗口最大时间戳(end-1ms) + 允许迟到时间(默认0)

4、迟到数据处理:侧流输出

在上面的延迟关窗与允许迟到的基础上,肯定还是不能囊括所有数据,因为乱序程度理论上可以无限大,如上的例子,对于等了10分钟才开课,且到了关教室门的时间还没到的学生,让去网吧游荡也不合理(类比流中直接丢弃这个数据),可以考虑把严重迟到的学生领到保安室,对应到Flink,那就是把乱序极大的数据使用侧流输出。关键代码:

java 复制代码
OutputTag<WaterSensor> lateTag = new OutputTag<>("late-data", Types.POJO(WaterSensor.class));  //侧流Tag对象
java 复制代码
.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
.allowedLateness(Time.seconds(3))
.sideOutputLateData(lateTag)  //迟到数据侧流输出
java 复制代码
//主流
process.print();
// 从主流获取侧输出流,打印
process.getSideOutput(lateTag).printToErr("关窗后的迟到数据");

完整demo:

java 复制代码
public class WatermarkLateDemo {
    public static void main(String[] args) throws Exception {
    
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        env.setParallelism(1);

        SingleOutputStreamOperator<WaterSensor> sensorDS = env
                .socketTextStream("node01", 9527)
                .map(new WaterSensorMapFunction());

        WatermarkStrategy<WaterSensor> watermarkStrategy = WatermarkStrategy
                .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                .withTimestampAssigner((element, recordTimestamp) -> element.getTs() * 1000L);

        SingleOutputStreamOperator<WaterSensor> sensorDSwithWatermark = sensorDS.assignTimestampsAndWatermarks(watermarkStrategy);


        OutputTag<WaterSensor> lateTag = new OutputTag<>("late-data", Types.POJO(WaterSensor.class));

        SingleOutputStreamOperator<String> process = sensorDSwithWatermark.keyBy(sensor -> sensor.getId())
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .allowedLateness(Time.seconds(2)) // 推迟2s关窗
                .sideOutputLateData(lateTag) // 关窗后的迟到数据,放入侧输出流
                .process(
                        new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {

                            @Override
                            public void process(String s, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {
                                long startTs = context.window().getStart();
                                long endTs = context.window().getEnd();
                                String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");
                                String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");

                                long count = elements.spliterator().estimateSize();

                                out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements.toString());
                            }
                        }
                );


        process.print();
        // 从主流获取侧输出流,打印
        process.getSideOutput(lateTag).printToErr("关窗后的迟到数据");

        env.execute();
    }
}

执行:

5、问

如果watermark设置延时等待3s,窗口允许迟到2s,为什么不直接延时等待5s?

java 复制代码
答:
  • 首先延时时间不能设置太大,因为这会导致计算延迟太大,失去结果的实时性
  • 其次,窗口允许迟到是对迟到数据的补偿处理,尽量让结果准确,修正结果的
  • 因此,一般延时时间不设置一个较大的值,常为秒级,而允许迟到时间则可以用来处理大部分迟到数据,极端迟到的数据,可使用侧流输出,获取后再做对应的处理
相关推荐
重生之绝世牛码12 分钟前
Java设计模式 —— 【结构型模式】享元模式(Flyweight Pattern) 详解
java·大数据·开发语言·设计模式·享元模式·设计原则
喝醉酒的小白12 分钟前
ElasticSearch 的核心功能
大数据·elasticsearch·jenkins
蚂蚁数据AntData2 小时前
流批一体向量化计算引擎 Flex 在蚂蚁的探索和实践
大数据·数据仓库·spark·数据库架构
奥顺互联V4 小时前
深入理解 ThinkPHP:框架结构与核心概念详解
大数据·mysql·开源·php
郭源潮3455 小时前
Hadoop
大数据·hadoop·分布式
中科岩创5 小时前
中科岩创桥梁自动化监测解决方案
大数据·网络·物联网
百家方案5 小时前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
forestsea5 小时前
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
大数据·elasticsearch·搜索引擎
开着拖拉机回家5 小时前
【Ambari】使用 Knox 进行 LDAP 身份认证
大数据·hadoop·gateway·ambari·ldap·knox
地球资源数据云6 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法