Data-Centric Financial Large Language Models

本文是LLM系列文章,针对《Data-Centric Financial Large Language Models》的翻译。

以数据为中心的大语言金融模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论和未来工作](#5 结论和未来工作)

摘要

大型语言模型(LLM)有望用于自然语言任务,但在直接应用于金融等复杂领域时却举步维艰。LLM很难对所有相关信息进行推理和整合。我们提出了一种以数据为中心的方法,使LLM能够更好地处理财务任务。我们的关键见解是,与其一次用所有内容重载LLM,不如对数据进行预处理和预理解。我们使用基于多任务提示的微调创建了一个财务LLM(FLLM),以实现数据预处理和预理解。然而,每个任务的标记数据很少。为了克服手动注释成本,我们使用溯因增强推理(AAR)通过修改FLLM自己输出的伪标签来自动生成训练数据。实验表明,我们的以数据为中心的带有AAR的FLLM大大优于为原始文本设计的基线财务LLM,在财务分析和解释任务方面达到了最先进的水平。我们还开源了一个新的财务分析和解释基准。我们的方法为释放LLM在复杂现实世界领域的潜力提供了一条很有前途的途径。

1 引言

2 背景

3 方法

4 实验

5 结论和未来工作

本文提出了一种基于FLLM的以数据为中心的方法,以提高LLM在财务分析任务中的能力。为了克服标记数据的稀缺性,他们采用溯因增强推理来自动生成训练数据。实验表明,他们以数据为中心的金融LLM和溯因增强推理大大优于基线LLM,实现了最先进的金融分析和解释基准。以数据为中心的方法为释放LLM在复杂现实世界领域的潜力提供了一个很有前途的方向。采用新的财务分析和解释基准也是一项宝贵的贡献。此外,未来工作的一个有趣方向是将以数据为中心的方法与其他方法相结合,如金融文本的提示和自我监督预训练。整合财务报告、财报电话和股价等多模式数据也可以实现更细致的财务分析。

相关推荐
牛客企业服务4 分钟前
AI面试选型策略:9大维度避坑指南
人工智能·面试·职场和发展
Yeats_Liao9 分钟前
MindSpore开发之路(四):核心数据结构Tensor
数据结构·人工智能·机器学习
许泽宇的技术分享33 分钟前
解密Anthropic的MCP Inspector:从协议调试到AI应用开发的全栈架构之旅
人工智能·架构·typescript·mcp·ai开发工具
nopSled37 分钟前
AlphaAvatar:一个基于 LiveKit 的插件化实时 Omni-Avatar 架构
人工智能·语言模型
lovingsoft37 分钟前
如何看自己笔记本是不是ARM64
人工智能·测试管理
美狐美颜sdk1 小时前
AI加持下的直播美颜sdk:动态贴纸功能的未来形态前瞻
人工智能·美颜sdk·直播美颜sdk·第三方美颜sdk·人脸美型sdk
火山引擎开发者社区1 小时前
Force 开发者日:火山引擎 Agent 开发者生态全面升级
人工智能·火山引擎
智算菩萨1 小时前
从对话系统到对话式智能体:对话式AI发展综述与2025年前沿整合
人工智能
yiersansiwu123d1 小时前
AI时代的就业变革:在替代与创造中寻找平衡之道
人工智能
baidu_172012531 小时前
VS CODE使用不了iflow
自然语言处理