Data-Centric Financial Large Language Models

本文是LLM系列文章,针对《Data-Centric Financial Large Language Models》的翻译。

以数据为中心的大语言金融模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论和未来工作](#5 结论和未来工作)

摘要

大型语言模型(LLM)有望用于自然语言任务,但在直接应用于金融等复杂领域时却举步维艰。LLM很难对所有相关信息进行推理和整合。我们提出了一种以数据为中心的方法,使LLM能够更好地处理财务任务。我们的关键见解是,与其一次用所有内容重载LLM,不如对数据进行预处理和预理解。我们使用基于多任务提示的微调创建了一个财务LLM(FLLM),以实现数据预处理和预理解。然而,每个任务的标记数据很少。为了克服手动注释成本,我们使用溯因增强推理(AAR)通过修改FLLM自己输出的伪标签来自动生成训练数据。实验表明,我们的以数据为中心的带有AAR的FLLM大大优于为原始文本设计的基线财务LLM,在财务分析和解释任务方面达到了最先进的水平。我们还开源了一个新的财务分析和解释基准。我们的方法为释放LLM在复杂现实世界领域的潜力提供了一条很有前途的途径。

1 引言

2 背景

3 方法

4 实验

5 结论和未来工作

本文提出了一种基于FLLM的以数据为中心的方法,以提高LLM在财务分析任务中的能力。为了克服标记数据的稀缺性,他们采用溯因增强推理来自动生成训练数据。实验表明,他们以数据为中心的金融LLM和溯因增强推理大大优于基线LLM,实现了最先进的金融分析和解释基准。以数据为中心的方法为释放LLM在复杂现实世界领域的潜力提供了一个很有前途的方向。采用新的财务分析和解释基准也是一项宝贵的贡献。此外,未来工作的一个有趣方向是将以数据为中心的方法与其他方法相结合,如金融文本的提示和自我监督预训练。整合财务报告、财报电话和股价等多模式数据也可以实现更细致的财务分析。

相关推荐
格林威8 分钟前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
大千AI助手8 分钟前
Graph-R1:智能图谱检索增强的结构化多轮推理框架
人工智能·神经网络·大模型·rag·检索增强生成·大千ai助手·graph-r1
瑞禧生物ruixibio27 分钟前
ABA-Biotin,脱落酸-生物素,用于追踪ABA在植物细胞中的分布及运输路径
人工智能
哔哩哔哩技术44 分钟前
B站基础安全在AI溯源方向的探索实践
人工智能
IT_陈寒1 小时前
7个鲜为人知的JavaScript性能优化技巧,让你的网页加载速度提升50%
前端·人工智能·后端
城数派1 小时前
1951-2100年全球复合极端气候事件数据集
人工智能·数据分析
NON-JUDGMENTAL1 小时前
在 Ubuntu 上安装 Ollama 并通过 Open WebUI 运行本地大语言模型
linux·ubuntu·语言模型
Hody911 小时前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj1 小时前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名1 小时前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构