Data-Centric Financial Large Language Models

本文是LLM系列文章,针对《Data-Centric Financial Large Language Models》的翻译。

以数据为中心的大语言金融模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论和未来工作](#5 结论和未来工作)

摘要

大型语言模型(LLM)有望用于自然语言任务,但在直接应用于金融等复杂领域时却举步维艰。LLM很难对所有相关信息进行推理和整合。我们提出了一种以数据为中心的方法,使LLM能够更好地处理财务任务。我们的关键见解是,与其一次用所有内容重载LLM,不如对数据进行预处理和预理解。我们使用基于多任务提示的微调创建了一个财务LLM(FLLM),以实现数据预处理和预理解。然而,每个任务的标记数据很少。为了克服手动注释成本,我们使用溯因增强推理(AAR)通过修改FLLM自己输出的伪标签来自动生成训练数据。实验表明,我们的以数据为中心的带有AAR的FLLM大大优于为原始文本设计的基线财务LLM,在财务分析和解释任务方面达到了最先进的水平。我们还开源了一个新的财务分析和解释基准。我们的方法为释放LLM在复杂现实世界领域的潜力提供了一条很有前途的途径。

1 引言

2 背景

3 方法

4 实验

5 结论和未来工作

本文提出了一种基于FLLM的以数据为中心的方法,以提高LLM在财务分析任务中的能力。为了克服标记数据的稀缺性,他们采用溯因增强推理来自动生成训练数据。实验表明,他们以数据为中心的金融LLM和溯因增强推理大大优于基线LLM,实现了最先进的金融分析和解释基准。以数据为中心的方法为释放LLM在复杂现实世界领域的潜力提供了一个很有前途的方向。采用新的财务分析和解释基准也是一项宝贵的贡献。此外,未来工作的一个有趣方向是将以数据为中心的方法与其他方法相结合,如金融文本的提示和自我监督预训练。整合财务报告、财报电话和股价等多模式数据也可以实现更细致的财务分析。

相关推荐
bylander几秒前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu11 分钟前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑19 分钟前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体
独自归家的兔21 分钟前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
一个处女座的程序猿22 分钟前
AI:解读Sam Altman与多位 AI 构建者对话—构建可落地的 AI—剖析 OpenAI Town Hall 与给创业者、产品/工程/安全团队的实用指南
人工智能
依依yyy22 分钟前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
海域云-罗鹏32 分钟前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
冬奇Lab35 分钟前
深入理解 Claude Code:架构、上下文与工具系统
人工智能·ai编程
Up九五小庞42 分钟前
本地部署 + Docker 容器化实战:中医舌诊 AI 项目 TongueDiagnosis 部署全记录-九五小庞
人工智能
John_ToDebug1 小时前
2025年度个人总结:在技术深海中锚定价值,于时代浪潮中重塑自我
人工智能·程序人生