【题解】[GenshinOI Round 3] P9816 少项式复合幂

题目链接

分析

首先这题给了很大的提示信息 注意 m 和 p 的范围 , 很自然的想到可以先把所有可能的 f ( x ) f(x) f(x) 算出来.

思维误区

有些人在算完 f ( x ) f(x) f(x) 之后可能就会去思考找环的问题,然后一些码力弱的大佬就会祭掉.

在经过仔细的观察之后 (大多数人其实一眼就看出来了罢 , 可以发现最终答案的计算是符合结合律的,或者说具有传递性? 所以考虑倍增.

令 f a [ i ] [ j ] fa[i][j] fa[i][j] 表示 f 1 < < j ( i ) f_{1<<j}(i) f1<<j(i) 的值,初始时把 f [ i ] [ 0 ] f[i][0] f[i][0] 算出来,后面就可以直接倍增了.

Code

cpp 复制代码
#include <bits/stdc++.h>
#define int long long
const int N = 1e5+10;

using namespace std;
int m,q,p;
int ksm(int a, int b){
	int ans = 1;
	while(b){
		if(b&1){
			ans = ans * a % p;
		}
		a = a*a%p;
		b >>= 1;
	}
	return ans;
}
int a[30],b[30];
int f[N];
int get(int x){
	int ans = 0;
	for(int i = 1; i <= m; i++){
		ans = (ans + a[i]*ksm(x,b[i])%p) % p;
	}
	return ans;
}
bool vis[N];
int belong[N];
vector<int> e[N];
int fa[N][30]; 
void init(){
	for(int i = 0; i < p; i++){
		fa[i][0] = get(i);
	}
	for(int i = 1;i <= 25; i++){
		for(int j = 0; j < p; j++){
			fa[j][i] = fa[fa[j][i-1]][i-1];
		}
	}
}
signed main(){
	cin >> m >> q >> p;
	for(int i = 1; i<= m; i++){
		cin >> a[i] >> b[i];
		a[i] %= p;
	} 
	init();
	while(q--){
		int x,y;
		cin >> x >> y;
		x %= p;
		for(int i = 25; i >= 0; i--){
			if((1 << i) <= y) x = fa[x][i],y -= (1<<i);
		}
		cout << x << endl;
	}
	return 0;
}
相关推荐
阿猿收手吧!1 分钟前
【C++】Ranges:彻底改变STL编程方式
开发语言·c++
四谎真好看7 分钟前
SSM学习笔记(Spring篇 Day02)
笔记·学习·学习笔记·ssm
Polaris北40 分钟前
第二十三天打卡
c++
YunchengLi1 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
CUC-MenG2 小时前
Codeforces Round 1079 (Div. 2)A,B,C,D,E1,E2,F个人题解
c语言·开发语言·数学·算法
666HZ6662 小时前
数据结构4.0 串
c语言·数据结构·算法
weixin_421585012 小时前
常微分方程
算法
船神丿男人2 小时前
C++:STL string(一)
开发语言·c++
文艺倾年2 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法
程序员zgh3 小时前
Linux 内存管理单元 MMU
linux·运维·服务器·c语言·开发语言·c++