论文阅读——ELECTRA

论文下载:https://openreview.net/pdf?id=r1xMH1BtvB

另一篇分析文章:ELECTRA 详解 - 知乎

一、概述

对BERT的token mask 做了改进。结合了GAN生成对抗模型的思路,但是和GAN不同。

不是对选择的token直接用mask替代,而是替换为一个生成器网络产生的token。

然后训练模型时并不是只被破坏的token,而是训练一个辨别模型来预测这些被破坏的输入的每一个token是否是被生成模型生成的样本替代的。因为将GANs应用于文本很困难,所以生成损坏token的生成器是以最大似然进行训练的。

小generator和大discriminator共同训练,但判别器的梯度不会传给生成器

fine-tuning 时丢弃generator,只使用discriminator

二、网络结构和训练

1、模型训练两个网络G和D。

G:给定位置t,将该位置token替换为mask,输入到G,G输出一个概率,结合softmax层,来产生mask位置的xt,从而G产生损坏的输入。输出只在mask的token中计算分数,不是所有的token。

D:给定位置t,D预测xt是否是真的。输出只在mask的token中预测是不是真的,不是所有的。

对于给定一个随机位置序列,原始输入对应位置替换为[MASK] token,输入G,G学习恢复原始序列。D来分辨哪些token是被生成器产生的样本替换的。

文本损坏过程描述为:

2、损失函数为:

MLM损失的计算只计算m个,即m个被masked tokens

Disc损失 t的取值到 1..n,每个token都会更新参数

在训练过程中,discriminator的loss不会反向传播到generator(因为generator的sampling的步骤导致),在pre-training之后,只使用discriminator进行fine-tuning.

相关推荐
一车小面包7 分钟前
Transformer Decoder 中序列掩码(Sequence Mask / Look-ahead Mask)
人工智能·深度学习·transformer
渡我白衣2 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
小虎鲸004 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
CM莫问4 小时前
推荐算法之粗排
深度学习·算法·机器学习·数据挖掘·排序算法·推荐算法·粗排
ccut 第一混6 小时前
c# 使用yolov5模型
人工智能·深度学习
七元权7 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
智驱力人工智能7 小时前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
姚瑞南7 小时前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣7 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
一车小面包7 小时前
对注意力机制的直观理解
人工智能·深度学习·机器学习