🔥🔥🔥一文搞懂Langchain Document Loader(一)

前言

像 GPT-3 这样的语言模型已经在大量数据上进行了训练,包括数百 GB 和数十亿个单词。因此,它们具有扎实的知识基础,使它们在历史和科学等领域表现出色。然而,这些模型确实有局限性。一旦它们在训练中达到了某个程度,除非可以访问互联网,否则它们无法吸收任何新信息。此外,它们无法访问私人和企业文件中的大量数据。

要解决这个问题,理解"索引"的概念至关重要。这些索引有助于将文档结构化,以便于 LLMs 的使用。LangChain 提供了四种创建索引的工具 :

  • 文档加载器(Document Loaders)
  • 文本拆分器 (Text Splitters)
  • 向量存储 (Vector Stores)
  • 检索器(Retrievers)。

本指南旨在深入解释 LangChain 文档加载器( Document Loaders),使您能够充分利用它们在您的 LLM 应用程序中。)。顾名思义,文档加载器负责从不同的来源加载文档。它们是多功能的工具,可以处理各种数据格式,并将它们转换成语言模型可以轻松处理的标准结构。

了解 LangChain 文档加载器

首先要了解的概念是 Langchain 称之为文档(Document)的东西。文档非常简单,它有两个字段:

  • page_content(字符串):文档的原始文本
  • metadata(字典):关于文本的任何元数据的键/值存储(源 URL、作者等)

我们来看一个最基本的文档加载器(TextLoader),它打开一个文本文件并将文本加载到文档中。

python 复制代码
class TextLoader(BaseLoader):
    """Load text files."""

    def __init__(
        self,
        file_path: str,
        encoding: Optional[str] = None,
        autodetect_encoding: bool = False,
    ):
        """Initialize with file path."""
        self.file_path = file_path
        self.encoding = encoding
        self.autodetect_encoding = autodetect_encoding

    def load(self) -> List[Document]:
        """Load from file path."""
        text = ""
        try:
            with open(self.file_path, encoding=self.encoding) as f:
                text = f.read()
        except UnicodeDecodeError as e:
            # code to handle Decoding errors
        except Exception as e:
            raise RuntimeError(f"Error loading {self.file_path}") from e

        metadata = {"source": self.file_path}
        return [Document(page_content=text, metadata=metadata)]

TextLoader 将文档的 page_content 设置为文件的文本,metadata 存储"source"文件路径。

随着数据来源变得更加复杂,你会发现需要更多的逻辑来创建这些文档。归根结底,我们的核心目标是将数据转换为这种标准格式,以便在我们的索引系统中进一步处理。

LangChain 中有三种主要类型的文档加载器:Transform(转换)、Public Datasets/Services(公共数据集/服务)、Proprietary Datasets/Services(专有数据集/服务)。

相关推荐
秋名山大前端6 小时前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
视觉&物联智能12 小时前
【杂谈】-2026年人工智能发展趋势:智能体崛起、行业洗牌与安全挑战
人工智能·安全·llm·aigc·agi·智能体
勇气要爆发14 小时前
【AI扫盲】大模型(LLM)原理详解:从 DeepSeek 到 GPT-5 全面解析 (2026最新版)
人工智能·gpt·机器学习·llm·微调·多模态·预训练
AI茶皖16 小时前
先知AI如何破解男装行业AIGC应用困局?
aigc
学习3人组16 小时前
Nano Banana Gemini 2.5 Flash Image闭源API提供服务
aigc·nano banana
GISer_Jing17 小时前
一次编码,七端运行:Taro多端统一架构深度解析与电商实战
前端·aigc·taro
东哥爱编程17 小时前
从混沌到协同:AI代理的规模化之路 (2026-01-22 至 2026-01-24)
aigc·程序那些事
敲上瘾17 小时前
用Coze打造你的专属AI应用:从智能体到Web部署指南
前端·人工智能·python·阿里云·aigc
特立独行的猫a17 小时前
OpenAI 函数调用完全指南:让大模型连接外部世界的核心原理
openai·函数调用·mcp·mcpserver
松涛和鸣18 小时前
63、IMX6ULL ADC驱动开发
c语言·arm开发·驱动开发·单片机·gpt·fpga开发