论文阅读——BERT

ArXiv:https://arxiv.org/abs/1810.04805

github:GitHub - google-research/bert: TensorFlow code and pre-trained models for BERT

一、模型及特点:

1、模型:

深层双向transformer encoder结构

BERT-BASE:(L=12, H=768, A=12)

BERT-LARGE:(L=24, H=1024, A=16)

2、特点:

不同任务使用统一架构,预训练和微调只有很小不同

双向预训练模型------通过训练MLM子任务获得

二、训练:两阶段训练------预训练和微调

1、预训练:

(1)训练设置

1)在无标签、不同任务上训练

2)训练两个子任务:Masked LM(MLM),Next Sentence Prediction (NSP)

MLM:为了双向模型

损失函数:cross entropy loss

mask:随机选择15%的位置,被选择的位置有80%mask,10%随机token,10%unchanged。训练中位置不变,但是由于每个句子不一样,所以预测的token也不是每次都一样。

NSP:为了理解句子关系

(2)数据:

BooksCorpus (800M words)、English Wikipedia (2,500M words) extract only the text passages and ignore lists, tables, and headers.

2、微调:

预训练参数初始化,针对不对任务在有标签数据的所有参数微调,不同任务各自单独微调。

三、实验:

1、数据:

GLUE、SQuAD v1.1(问答。损失函数-最大似然,首先在TriviaQA上微调,然后在SQuAD 上微调)、SQuAD v2.0(没有在TriviaQA上微调)、The Situations With Adversarial Generations (SWAG)

相关推荐
Json_1 小时前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
Json_1 小时前
Vue 实例方法
前端·vue.js·深度学习
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant1 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
Json_2 小时前
实例入门 实例属性
前端·深度学习
Json_2 小时前
JS中的apply和arguments小练习
前端·javascript·深度学习
Json_2 小时前
Vue Methods Option 方法选项
前端·vue.js·深度学习
Json_2 小时前
Vue v-bind指令
前端·vue.js·深度学习
Json_3 小时前
JS中的冒泡简洁理解
前端·javascript·深度学习
Json_3 小时前
Vue 自定义指令
前端·vue.js·深度学习