神经网络之经验风险最小化

🧠 一、基本思想

在机器学习中,我们希望找到一个函数(模型)(f(x))( f(x) )(f(x)),使它在真实数据分布 (P(X,Y))( P(X, Y) )(P(X,Y)) 下的**期望风险(真实风险)**最小化:

R(f)=E(X,Y)∼P[L(f(X),Y)] R(f) = \mathbb{E}_{(X,Y)\sim P}[L(f(X), Y)] R(f)=E(X,Y)∼P[L(f(X),Y)]

其中

  • (L(⋅,⋅))( L(\cdot,\cdot) )(L(⋅,⋅)):损失函数(如平方误差、交叉熵等),
  • (f(X))( f(X) )(f(X)):模型的预测输出,
  • (Y)( Y )(Y):真实标签。

但是,真实分布 (P(X,Y))( P(X, Y) )(P(X,Y)) 是未知的,因此我们无法直接计算这个期望风险。


⚙️ 二、经验风险(Empirical Risk)

我们只有一个样本数据集:
S=(x1,y1),(x2,y2),...,(xn,yn) S = {(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)} S=(x1,y1),(x2,y2),...,(xn,yn)

经验风险定义为:
Remp(f)=1n∑i=1nL(f(xi),yi) R_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L(f(x_i), y_i) Remp(f)=n1i=1∑nL(f(xi),yi)

也就是在训练样本上的平均损失。


🎯 三、经验风险最小化原则(ERM Principle)

ERM 的思想就是用经验风险来近似真实风险,并在此基础上选择模型:
f∗=arg⁡min⁡f∈FRemp(f) f^* = \arg\min_{f \in \mathcal{F}} R_{\text{emp}}(f) f∗=argf∈FminRemp(f)

换句话说:

我们用训练集的平均损失作为目标函数,找到使其最小的模型。


📉 四、存在的问题

纯粹的 ERM 容易导致 过拟合(overfitting)

模型在训练集上表现很好,但在新样本(测试集)上表现较差。


🛡️ 五、改进:结构风险最小化(SRM)

为了解决过拟合问题,引入了 结构风险最小化(Structural Risk Minimization) ,在经验风险的基础上加上一个正则化项:
Rsrm(f)=Remp(f)+λ,Ω(f) R_{\text{srm}}(f) = R_{\text{emp}}(f) + \lambda , \Omega(f) Rsrm(f)=Remp(f)+λ,Ω(f)

其中:

  • (Ω(f))( \Omega(f) )(Ω(f)):模型复杂度的度量(正则项);
  • (λ)( \lambda )(λ):平衡经验风险与模型复杂度的系数。

这就是许多现代机器学习算法(如岭回归、Lasso、SVM、神经网络正则化等)的理论基础。


✅ 六、总结对比

概念 定义 优缺点
经验风险最小化 (ERM) 在训练集上最小化平均损失 简单易行,但易过拟合
结构风险最小化 (SRM) 在 ERM 基础上加入正则项 抑制过拟合,更具泛化能力
相关推荐
音视频牛哥35 分钟前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在1 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星1 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin2 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群2 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸2 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI2 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99762 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
二川bro2 小时前
Python在AI领域应用全景:2025趋势与案例
开发语言·人工智能·python