0基础学习PyFlink——使用DataStream进行字数统计

大纲

《0基础学习PyFlink------模拟Hadoop流程》一文中,我们看到Hadoop在处理大数据时的MapReduce过程。

本节介绍的DataStream API,则使用了类似的结构。

source

为了方便,我们依然使用from_collection从内存中读取数据。

和使用Table API类似,我们给from_collection传递的第二参数是每行数据类型。本例中是String,即"A C B"的类型。

python 复制代码
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode

word_count_data = ["A C B",
                   "A E B",
                   "E C D"]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.BATCH)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.STRING()
    # define the source
    source = env.from_collection(word_count_data, source_type_info)

可以使用下面指令输出source内容

python 复制代码
    source.print()
bash 复制代码
A C B
A E B
E C D

Map

和上图一样,Map由Splitting和Mapping组成。它们分别将数据切割成做小运算单元,和生成map结构。

Splitting

python 复制代码
    def split(line):
        for s in line.split():
            yield s
            
    splitted = source.flat_map(split) 

上述splitted的结构输出是

bash 复制代码
A
C
B
A
E
B
E
C
D

Mapping

Mapping的操作就是将之前的数组结构转换成map结构

python 复制代码
mapped=splitted.map(lambda i: (i, 1), Types.TUPLE([Types.STRING(), Types.INT()]))

mapped的输出值如下,可以看到它还是按我们输入数据的顺序排列的。

bash 复制代码
(A,1)
(C,1)
(B,1)
(A,1)
(E,1)
(B,1)
(E,1)
(C,1)
(D,1)

Reduce

Keying

这一步对应于上图中的Shuffling&Sorting,它会将相同key的数据进行分区,以供后面reducing操作使用。

python 复制代码
    keyed=mapped.key_by(lambda i: i[0]) 

可以看到keyed数据已经经过排序和聚合了。

bash 复制代码
(A,1)
(A,1)
(B,1)
(B,1)
(C,1)
(C,1)
(D,1)

Reducing

python 复制代码
 reduced=keyed.reduce(lambda i, j: (i[0], i[1] + j[1]))

reduce的方法有如下注释

Applies a reduce transformation on the grouped data stream grouped on by the given

key position. The ReduceFunction will receive input values based on the key value.

Only input values with the same key will go to the same reducer.

特别是最后一句非常有用"Only input values with the same key will go to the same reducer"(只有相同Key的输入数据才会进入相同的Reducer中)。这句话意味着上述Keyed的数据会被分组执行,于是就不会出现计算错乱。

bash 复制代码
(A,2)
(B,2)
(C,2)
(D,1)
(E,2)

完整代码

python 复制代码
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode

word_count_data = ["A C B",
                   "A E B",
                   "E C D"]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.BATCH)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.STRING()
    # define the source
    source = env.from_collection(word_count_data, source_type_info)
    # source.print()

    def split(line):
        for s in line.split():
            yield s
            
    splitted = source.flat_map(split) 
    # splitted.print()
    mapped=splitted.map(lambda i: (i, 1), Types.TUPLE([Types.STRING(), Types.INT()]))
    # mapped.print()
    keyed=mapped.key_by(lambda i: i[0]) 
    # keyed.print()
    reduced=keyed.reduce(lambda i, j: (i[0], i[1] + j[1]))

    # define the sink
    reduced.print()

    # submit for execution
    env.execute()

if __name__ == '__main__':
    word_count()

结构

参考资料

相关推荐
唐古乌梁海20 分钟前
【python】在Django中,执行原生SQL查询
python·sql·django
程序员大雄学编程1 小时前
「用Python来学微积分」5. 曲线的极坐标方程
开发语言·python·微积分
派可数据BI可视化1 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti1 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink
一位代码2 小时前
python | requests爬虫如何正确获取网页编码?
开发语言·爬虫·python
可触的未来,发芽的智生2 小时前
新奇特:神经网络速比器,小镇债务清零的算法奇缘
javascript·人工智能·python
mortimer2 小时前
还在被 Windows 路径的大小写和正反斜杠坑?是时候让 pathlib 拯救你的代码了!
人工智能·python
std860212 小时前
Rust 与 Python – 这是未来的语言吗?
开发语言·python·rust
Lx3523 小时前
Flink窗口机制详解:如何处理无界数据流
大数据
Lx3523 小时前
深入理解Flink的流处理模型
大数据