0基础学习PyFlink——使用DataStream进行字数统计

大纲

《0基础学习PyFlink------模拟Hadoop流程》一文中,我们看到Hadoop在处理大数据时的MapReduce过程。

本节介绍的DataStream API,则使用了类似的结构。

source

为了方便,我们依然使用from_collection从内存中读取数据。

和使用Table API类似,我们给from_collection传递的第二参数是每行数据类型。本例中是String,即"A C B"的类型。

python 复制代码
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode

word_count_data = ["A C B",
                   "A E B",
                   "E C D"]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.BATCH)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.STRING()
    # define the source
    source = env.from_collection(word_count_data, source_type_info)

可以使用下面指令输出source内容

python 复制代码
    source.print()
bash 复制代码
A C B
A E B
E C D

Map

和上图一样,Map由Splitting和Mapping组成。它们分别将数据切割成做小运算单元,和生成map结构。

Splitting

python 复制代码
    def split(line):
        for s in line.split():
            yield s
            
    splitted = source.flat_map(split) 

上述splitted的结构输出是

bash 复制代码
A
C
B
A
E
B
E
C
D

Mapping

Mapping的操作就是将之前的数组结构转换成map结构

python 复制代码
mapped=splitted.map(lambda i: (i, 1), Types.TUPLE([Types.STRING(), Types.INT()]))

mapped的输出值如下,可以看到它还是按我们输入数据的顺序排列的。

bash 复制代码
(A,1)
(C,1)
(B,1)
(A,1)
(E,1)
(B,1)
(E,1)
(C,1)
(D,1)

Reduce

Keying

这一步对应于上图中的Shuffling&Sorting,它会将相同key的数据进行分区,以供后面reducing操作使用。

python 复制代码
    keyed=mapped.key_by(lambda i: i[0]) 

可以看到keyed数据已经经过排序和聚合了。

bash 复制代码
(A,1)
(A,1)
(B,1)
(B,1)
(C,1)
(C,1)
(D,1)

Reducing

python 复制代码
 reduced=keyed.reduce(lambda i, j: (i[0], i[1] + j[1]))

reduce的方法有如下注释

Applies a reduce transformation on the grouped data stream grouped on by the given

key position. The ReduceFunction will receive input values based on the key value.

Only input values with the same key will go to the same reducer.

特别是最后一句非常有用"Only input values with the same key will go to the same reducer"(只有相同Key的输入数据才会进入相同的Reducer中)。这句话意味着上述Keyed的数据会被分组执行,于是就不会出现计算错乱。

bash 复制代码
(A,2)
(B,2)
(C,2)
(D,1)
(E,2)

完整代码

python 复制代码
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment, RuntimeExecutionMode

word_count_data = ["A C B",
                   "A E B",
                   "E C D"]

def word_count():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_runtime_mode(RuntimeExecutionMode.BATCH)
    # write all the data to one file
    env.set_parallelism(1)

    source_type_info = Types.STRING()
    # define the source
    source = env.from_collection(word_count_data, source_type_info)
    # source.print()

    def split(line):
        for s in line.split():
            yield s
            
    splitted = source.flat_map(split) 
    # splitted.print()
    mapped=splitted.map(lambda i: (i, 1), Types.TUPLE([Types.STRING(), Types.INT()]))
    # mapped.print()
    keyed=mapped.key_by(lambda i: i[0]) 
    # keyed.print()
    reduced=keyed.reduce(lambda i, j: (i[0], i[1] + j[1]))

    # define the sink
    reduced.print()

    # submit for execution
    env.execute()

if __name__ == '__main__':
    word_count()

结构

参考资料

相关推荐
fanjinhong_852119 分钟前
屏幕捕捉工具 (Screen Capture Tool)
python·github
isNotNullX23 分钟前
怎么用数据仓库来进行数据治理?
大数据·数据库·数据仓库·数据治理
HitpointNetSuite1 小时前
连锁餐饮行业ERP系统如何选择?
大数据·数据库·oracle·netsuite·erp
zskj_zhyl1 小时前
科技助老与智慧养老的国家级政策与地方实践探索
大数据·人工智能·科技
避避风港2 小时前
Java 抽象类
java·开发语言·python
YangYang9YangYan2 小时前
职业本科发展路径与规划指南
大数据·人工智能·学习·数据分析
V_156560272192 小时前
2025年蚌埠市“三首产品”、市级服务型制造示范、市级企业技术中心等5个项目认定申报指南大全
大数据·人工智能·制造
武子康3 小时前
Java-168 Neo4j CQL 实战:WHERE、DELETE/DETACH、SET、排序与分页
java·开发语言·数据库·python·sql·nosql·neo4j
liliangcsdn3 小时前
如何基于DSL脚本进行elasticsearch向量检索示例
大数据·elasticsearch·搜索引擎
周杰伦_Jay3 小时前
【电商微服务日志处理全方案】从MySQL瓶颈到大数据架构的实战转型
大数据·mysql·微服务·架构