NeRF-SLAM部署运行(3060Ti)

记录在部署运行期间遇到的一些问题,分享给大家~

一、环境

RTX 3060 Ti、8G显存(其实是不够用,只能简单跑跑demo)、Ubuntu18.04

二、部署

1. 下载代码
复制代码
git clone https://github.com/jrpowers/NeRF-SLAM.git --recurse-submodules
git submodule update --init --recursive
cd thirdparty/instant-ngp/ && git checkout feature/nerf_slam

这里clone的不是原作者的code,而是jrpowers的code,因为官方给的代码在安装部署过程中遇到了不少问题,所以先跳过,给大家介绍成功的流程,下文会介绍部分官方代码在部署过程中遇到的问题及对应的解决方法。

2. 安装CUDA 11.7 和PyTorch

这里我用的是anaconda,如何使用conda请参照ubuntu下anaconda的安装、配置与使用_ubuntu怎么使用anaconda_zllz0907的博客-CSDN博客

复制代码
conda create -n nerf python=3.9
conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117
3. 安装requirements
复制代码
pip install -r requirements.txt
pip install -r ./thirdparty/gtsam/python/requirements.txt
4. 编译ngp(确保cmake版本>3.22)
复制代码
cmake ./thirdparty/instant-ngp -B build_ngp
cmake --build build_ngp --config RelWithDebInfo -j
5. 编译gtsam

官方代码在编译gtsam时大概率会遇到问题

复制代码
cmake ./thirdparty/gtsam -DGTSAM_BUILD_PYTHON=1 -B build_gtsam 
cmake --build build_gtsam --config RelWithDebInfo -j
cd build_gtsam
make python-install

如果设备性能有限,或者编译时遇到cplusplus internal相关的问题,将上述第二行编译指令后的-j改为-j8或者更小的-j6,降低在编译时的并行数量。

6. 安装
复制代码
python setup.py install

三、运行

1. 下载数据集
复制代码
./scripts/download_replica_sample.bash
2. 运行
复制代码
python ./examples/slam_demo.py --dataset_dir=./datasets/Replica/office0 --dataset_name=nerf --buffer=100 --slam --parallel_run --img_stride=2 --fusion='nerf' --multi_gpu --gui

注意download_replica_sample.bash中的数据下载地址是Datasets,而运行地址是小写字母datasets,需改成一致。

如果运行时出现检测不到CUDA设备或者无gui画面时,错误如下:

复制代码
RuntimeError: Could not allocate memory: 
/thirdparty/instant-ngp/dependencies/tiny-cuda-nn/include/tiny-cuda-nn/gpu_memory.h:123 cudaMalloc(&rawptr, n_bytes+DEBUG_GUARD_SIZE*2) 
failed with error no CUDA-capable device is detected

将上述运行指令中的--multi_gpu选项去掉即可。

3. 其他模式运行

跳过SLAM,用位姿真值和深度运行。3060Ti 8G现存可以运行这种模式

复制代码
./scripts/download_cube.bash 
python ./examples/slam_demo.py --dataset_dir=./datasets/nerf-cube-diorama-dataset/room --dataset_name=nerf --buffer=100 --img_stride=1 --fusion='nerf' --gui

运行画面如下:

四、官方代码问题解决记录

1. gtsam编译问题

在执行cmake --build build_gtsam --config RelWithDebInfo后遇到

复制代码
#0 3.429 pyparsing.exceptions.ParseException: Expected string_end, found 'namespace'  (at char 1249), (line:46, col:1)
#0 3.450 make[2]: *** [python/CMakeFiles/pybind_wrap_gtsam_unstable.dir/build.make:76: python/gtsam_unstable.cpp] Error 1
#0 3.450 make[1]: *** [CMakeFiles/Makefile2:32340: python/CMakeFiles/pybind_wrap_gtsam_unstable.dir/all] Error 2

解决:

将thirdparty中的gtsam代码替换为https://github.com/ToniRV/gtsam-1下的代码,重新执行编译步骤即可。

2. 路径问题

download_replica_sample.bash中的数据下载地址是Datasets,而运行地址是小写字母datasets.

3. 运行时报错
复制代码
 File "/NeRF-SLAM/./examples/../slam/vio_slam.py", line 65, in initial_state
    naive_pose = gtsam.Pose3.identity()
AttributeError: type object 'gtsam.gtsam.Pose3' has no attribute 'identity'
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 126, in _main
    self = reduction.pickle.load(from_parent)
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/synchronize.py", line 110, in __setstate__
    self._semlock = _multiprocessing.SemLock._rebuild(*state)
FileNotFoundError: [Errno 2] No such file or directory
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 126, in _main
    self = reduction.pickle.load(from_parent)
  File "anaconda3/envs/zl/lib/python3.9/multiprocessing/synchronize.py", line 110, in __setstate__
    self._semlock = _multiprocessing.SemLock._rebuild(*state)
FileNotFoundError: [Errno 2] No such file or directory

重新卸载安装其他版本的gtsam也没解决,于是跳转至前文介绍的部署流程了。

相关推荐
JQLvopkk18 分钟前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉
小烤箱1 小时前
Autoware Universe 感知模块详解 | 第十一节:检测管线的通用工程模板与拆解思路导引
人工智能·机器人·自动驾驶·autoware·感知算法
资深web全栈开发1 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
540_5401 小时前
ADVANCE Day45
人工智能·python·深度学习
云和数据.ChenGuang2 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
纪伊路上盛名在2 小时前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件2 小时前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
狗狗学不会2 小时前
视觉检测的新范式:从“像素感知”到“时序语义推理”—— 基于 Qwen3-VL 与时序拼图策略的通用事件检测系统
人工智能·计算机视觉·视觉检测
人工智能培训3 小时前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策
scott1985124 小时前
DIFIX3D+: Improving 3D Reconstructions with Single-Step Diffusion Models
人工智能·计算机视觉·扩散模型·生成式