在IDEA运行spark程序(搭建Spark开发环境)

建议大家写在Linux上搭建好Hadoop的完全分布式集群环境和Spark集群环境,以下在IDEA中搭建的环境仅仅是在window系统上进行spark程序的开发学习,在window系统上可以不用安装hadoop和spark,spark程序可以通过pom.xml的文件配置,添加spark-core依赖,可以直接在IDEA中编写spark程序并运行结果。

一、相关软件的下载及环境配置

1.jdk的下载安装及环境变量配置(我选择的版本是jdk8.0(即jdk1.8),建议不要使用太高版本的,不然配置pom.xml容易报错)

链接:https://pan.baidu.com/s/1deXf6pgMiRca1O724fUOxg

提取码:sxuy

双击安装包,一直"Next"即可,最好不要安装到C盘,中间修改一下安装路径即可,最后点击"Finish"。我将jdk1.8安装在了D盘目录下的soft文件夹,bin路径如下:

配置环境变量:

win+R打开命令窗口输入:javac -verison ,进行检测是否成功配置环境变量:

2.IDEA的 下载安装(我选择的版本是2019.2.3,建议选择低版本的IDEA)

官网下载地址:IntelliJ IDEA -- 领先的 Java 和 Kotlin IDE (jetbrains.com.cn)

3.scala的下载(我选择的版本是2.12.15)安装及环境变量的配置

官网下载地址:The Scala Programming Language (scala-lang.org)

双击打开下载好的安装程序,一直"Next"即可,最好不要安装到C盘,中间修改一下安装路径即可,最后点击"Finish"。我将scala软件安装在了D盘目录下的Develop文件夹,bin路径如下:

配置scala的系统环境变量,将scala安装的bin目录路径加入到系统环境变量path中:

win+R打开命令窗口输入:scala -verison ,进行检测是否成功配置环境变量:

4.scala插件(版本要与IDEA版本保持一致,下载2019.2.3版本)的下载安装

官网地址:Scala - IntelliJ IDEs Plugin | Marketplace

下载完成后,将下载的压缩包解压到IDEA安装目录下的plugins目录下:

5.maven的下载(我选择的版本是3.5.4)与安装,系统环境变量的配置

官网地址:Maven -- Download Apache Maven

将对应版本的压缩包下载到本地,并新建一个文件夹Localwarehouse,用来保存下载的依赖文件

配置maven的系统环境配置,跟以上配置的方法一样,将bin目录地址写入path环境变量:

打开maven安装包下的conf文件夹下面的settings.xml,添加如下代码:

html 复制代码
<localRepository>D:\\Develop\\maven\\Localwarehouse</localRepository>

添加如下代码用来配置jdk版本:

html 复制代码
   <profile>
    <id>jdk-1.8.0</id>
    <activation>
    <activeByDefault>true</activeByDefault>
    <jdk>1.8.0</jdk>
    </activation>
    <properties>
    <maven.compiler.source>1.8.0</maven.compiler.source>
    <maven.compiler.target>1.8.0</maven.compiler.target>
    <maven.compiler.compilerVersion>1.8.0</maven.compiler.compilerVersion>
    </properties>
    </profile>

二、将maven加载到IDEA中

三、检测scala插件是否在IDEA中已经安装成功

四、用maven新建一个工程项目

五、配置pom.xml文件

1.如果只需要在本地运行spark程序,则只需要添加scala-library、spark-core、spark-sql、spark-streaming等依赖,添加代码如下:

html 复制代码
<properties>
        <!-- 声明scala的版本 -->
        <scala.version>2.12.15</scala.version>
        <!-- 声明linux集群搭建的spark版本,如果没有搭建则不用写 -->
        <spark.version>3.2.1</spark.version>
        <!-- 声明linux集群搭建的Hadoop版本 ,如果没有搭建则不用写-->
        <hadoop.version>3.1.4</hadoop.version>
    </properties>
    <dependencies>
        <!--scala-->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.2.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.2.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.2.1</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

六、新建scala类文件编写代码

当你右键发现无法新建scala类,需要将scala SDK添加到当前项目中。

鼠标点击java文件夹,右键new--->Scala Class

在WordCount文件中编写如下代码:

java 复制代码
import org.apache.spark.sql.SparkSession
object WordCount {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .master("local[*]")
      .appName("word count")
      .getOrCreate()
    val sc = spark.sparkContext
    val rdd = sc.textFile("data/input/words.txt")
    val counts = rdd.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
    counts.collect().foreach(println)
    println("全部的单词数:"+counts.count())
    counts.saveAsTextFile("data/output/word-count")
  }
}

准备好测试文件words.txt,将文件存放在scalaproject-->data-->input-->words.txt

html 复制代码
hello me you her
hello me you
hello me
hello

运行WordCount程序

运行结果:

相关推荐
二十七剑1 小时前
jvm中各个参数的理解
java·jvm
狮歌~资深攻城狮2 小时前
HBase性能优化秘籍:让数据处理飞起来
大数据·hbase
东阳马生架构2 小时前
JUC并发—9.并发安全集合四
java·juc并发·并发安全的集合
Elastic 中国社区官方博客2 小时前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina
计算机小白一个2 小时前
蓝桥杯 Java B 组之岛屿数量、二叉树路径和(区分DFS与回溯)
java·数据结构·算法·蓝桥杯
White graces3 小时前
正则表达式效验邮箱格式, 手机号格式, 密码长度
前端·spring boot·spring·正则表达式·java-ee·maven·intellij-idea
菠菠萝宝3 小时前
【Java八股文】10-数据结构与算法面试篇
java·开发语言·面试·红黑树·跳表·排序·lru
不会Hello World的小苗3 小时前
Java——链表(LinkedList)
java·开发语言·链表
努力的小T3 小时前
使用 Docker 部署 Apache Spark 集群教程
linux·运维·服务器·docker·容器·spark·云计算
workflower3 小时前
Prompt Engineering的重要性
大数据·人工智能·设计模式·prompt·软件工程·需求分析·ai编程