在IDEA运行spark程序(搭建Spark开发环境)

建议大家写在Linux上搭建好Hadoop的完全分布式集群环境和Spark集群环境,以下在IDEA中搭建的环境仅仅是在window系统上进行spark程序的开发学习,在window系统上可以不用安装hadoop和spark,spark程序可以通过pom.xml的文件配置,添加spark-core依赖,可以直接在IDEA中编写spark程序并运行结果。

一、相关软件的下载及环境配置

1.jdk的下载安装及环境变量配置(我选择的版本是jdk8.0(即jdk1.8),建议不要使用太高版本的,不然配置pom.xml容易报错)

链接:https://pan.baidu.com/s/1deXf6pgMiRca1O724fUOxg

提取码:sxuy

双击安装包,一直"Next"即可,最好不要安装到C盘,中间修改一下安装路径即可,最后点击"Finish"。我将jdk1.8安装在了D盘目录下的soft文件夹,bin路径如下:

配置环境变量:

win+R打开命令窗口输入:javac -verison ,进行检测是否成功配置环境变量:

2.IDEA的 下载安装(我选择的版本是2019.2.3,建议选择低版本的IDEA)

官网下载地址:IntelliJ IDEA -- 领先的 Java 和 Kotlin IDE (jetbrains.com.cn)

3.scala的下载(我选择的版本是2.12.15)安装及环境变量的配置

官网下载地址:The Scala Programming Language (scala-lang.org)

双击打开下载好的安装程序,一直"Next"即可,最好不要安装到C盘,中间修改一下安装路径即可,最后点击"Finish"。我将scala软件安装在了D盘目录下的Develop文件夹,bin路径如下:

配置scala的系统环境变量,将scala安装的bin目录路径加入到系统环境变量path中:

win+R打开命令窗口输入:scala -verison ,进行检测是否成功配置环境变量:

4.scala插件(版本要与IDEA版本保持一致,下载2019.2.3版本)的下载安装

官网地址:Scala - IntelliJ IDEs Plugin | Marketplace

下载完成后,将下载的压缩包解压到IDEA安装目录下的plugins目录下:

5.maven的下载(我选择的版本是3.5.4)与安装,系统环境变量的配置

官网地址:Maven -- Download Apache Maven

将对应版本的压缩包下载到本地,并新建一个文件夹Localwarehouse,用来保存下载的依赖文件

配置maven的系统环境配置,跟以上配置的方法一样,将bin目录地址写入path环境变量:

打开maven安装包下的conf文件夹下面的settings.xml,添加如下代码:

html 复制代码
<localRepository>D:\\Develop\\maven\\Localwarehouse</localRepository>

添加如下代码用来配置jdk版本:

html 复制代码
   <profile>
    <id>jdk-1.8.0</id>
    <activation>
    <activeByDefault>true</activeByDefault>
    <jdk>1.8.0</jdk>
    </activation>
    <properties>
    <maven.compiler.source>1.8.0</maven.compiler.source>
    <maven.compiler.target>1.8.0</maven.compiler.target>
    <maven.compiler.compilerVersion>1.8.0</maven.compiler.compilerVersion>
    </properties>
    </profile>

二、将maven加载到IDEA中

三、检测scala插件是否在IDEA中已经安装成功

四、用maven新建一个工程项目

五、配置pom.xml文件

1.如果只需要在本地运行spark程序,则只需要添加scala-library、spark-core、spark-sql、spark-streaming等依赖,添加代码如下:

html 复制代码
<properties>
        <!-- 声明scala的版本 -->
        <scala.version>2.12.15</scala.version>
        <!-- 声明linux集群搭建的spark版本,如果没有搭建则不用写 -->
        <spark.version>3.2.1</spark.version>
        <!-- 声明linux集群搭建的Hadoop版本 ,如果没有搭建则不用写-->
        <hadoop.version>3.1.4</hadoop.version>
    </properties>
    <dependencies>
        <!--scala-->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.2.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.2.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.2.1</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

六、新建scala类文件编写代码

当你右键发现无法新建scala类,需要将scala SDK添加到当前项目中。

鼠标点击java文件夹,右键new--->Scala Class

在WordCount文件中编写如下代码:

java 复制代码
import org.apache.spark.sql.SparkSession
object WordCount {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .master("local[*]")
      .appName("word count")
      .getOrCreate()
    val sc = spark.sparkContext
    val rdd = sc.textFile("data/input/words.txt")
    val counts = rdd.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
    counts.collect().foreach(println)
    println("全部的单词数:"+counts.count())
    counts.saveAsTextFile("data/output/word-count")
  }
}

准备好测试文件words.txt,将文件存放在scalaproject-->data-->input-->words.txt

html 复制代码
hello me you her
hello me you
hello me
hello

运行WordCount程序

运行结果:

相关推荐
桦说编程2 小时前
Java 中如何创建不可变类型
java·后端·函数式编程
lifallen2 小时前
Java Stream sort算子实现:SortedOps
java·开发语言
IT毕设实战小研2 小时前
基于Spring Boot 4s店车辆管理系统 租车管理系统 停车位管理系统 智慧车辆管理系统
java·开发语言·spring boot·后端·spring·毕业设计·课程设计
没有bug.的程序员3 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋3 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
阿华的代码王国4 小时前
【Android】RecyclerView复用CheckBox的异常状态
android·xml·java·前端·后端
Zyy~4 小时前
《设计模式》装饰模式
java·设计模式
A尘埃4 小时前
企业级Java项目和大模型结合场景(智能客服系统:电商、金融、政务、企业)
java·金融·政务·智能客服系统
喂完待续4 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交4 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图