PyTorch入门学习(十一):神经网络-线性层及其他层介绍

一、简介

神经网络是由多个层组成的,每一层都包含了一组权重和一个激活函数。每层的作用是将输入数据进行变换,从而最终生成输出。线性层是神经网络中的基本层之一,它执行的操作是线性变换,通常表示为:

css 复制代码
y = Wx + b

其中,y 是输出,x 是输入,W 是权重矩阵,b 是偏置。线性层将输入数据与权重矩阵相乘,然后加上偏置,得到输出。线性层的主要作用是进行特征提取和数据的线性组合。

二、PyTorch 中的线性层

在 PyTorch 中,线性层可以通过 torch.nn.Linear 类来实现。下面是一个示例,演示如何创建一个简单的线性层:

python 复制代码
import torch
from torch.nn import Linear

# 创建一个线性层,输入特征数为 3,输出特征数为 2
linear_layer = Linear(3, 2)

在上面的示例中,首先导入 PyTorch 库,然后创建一个线性层 linear_layer,指定输入特征数为 3,输出特征数为 2。该线性层将对输入数据执行一个线性变换。

三、示例:使用线性层构建神经网络

现在,接下来看一个示例,如何使用线性层构建一个简单的神经网络,并将其应用于图像数据。我们使用 PyTorch 和 CIFAR-10 数据集,这是一个广泛使用的图像分类数据集。

python 复制代码
import torch
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
import torchvision.datasets

# 加载 CIFAR-10 数据集
dataset = torchvision.datasets.CIFAR10("D:\\Python_Project\\pytorch\\dataset2", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)

# 定义一个简单的神经网络
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init()
        self.linear1 = Linear(196608, 10)

    def forward(self, x):
        x = x.view(x.size(0), -1)  # 将输入数据展平
        x = self.linear1(x)
        return x

# 创建模型实例
model = MyModel()

# 遍历数据集并应用模型
for data in dataloader:
    imgs, targets = data
    outputs = model(imgs)
    print(outputs.shape)

在上面的示例中,首先加载 CIFAR-10 数据集,然后定义了一个简单的神经网络 MyModel,其中包含一个线性层。我们遍历数据集并将输入数据传递给模型,然后打印输出的形状。

四、常见的其他层

除了线性层,神经网络中还有许多其他常见的层,例如卷积层(Convolutional Layers)、池化层(Pooling Layers)、循环层(Recurrent Layers)等。这些层在不同类型的神经网络中起到关键作用。例如,卷积层在处理图像数据时非常重要,循环层用于处理序列数据,池化层用于减小数据维度。在 PyTorch 中,这些层都有相应的实现,可以轻松地构建不同类型的神经网络。

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
名字不要太长 像我这样就好3 小时前
【iOS】OC源码阅读——alloc源码分析
笔记·学习·macos·ios·objective-c
每天都要写算法(努力版)3 小时前
【神经网络与深度学习】五折交叉验证(5-Fold Cross-Validation)
人工智能·深度学习·神经网络
conkl4 小时前
如何初入学习编程包含学习流程图
学习·流程图
kyle~6 小时前
深度学习---框架流程
人工智能·深度学习
烟锁池塘柳07 小时前
【深度学习】评估模型复杂度:GFLOPs与Params详解
人工智能·深度学习
FAREWELL000757 小时前
C#进阶学习(十六)C#中的迭代器
开发语言·学习·c#·迭代器模式·迭代器
白熊1887 小时前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
毒果7 小时前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习
DXM05218 小时前
牟乃夏《ArcGIS Engine地理信息系统开发教程》学习笔记3-地图基本操作与实战案例
开发语言·笔记·学习·arcgis·c#·ae·arcgis engine
qsmyhsgcs9 小时前
Java程序员转人工智能入门学习路线图(2025版)
java·人工智能·学习·机器学习·算法工程师·人工智能入门·ai算法工程师