图像处理:图片二值化学习,以及代码中如何实现

目录

1、了解下图片二值化的含义

2、进行图像二值化处理的方法

3、如何选择合适的阈值进行二值化

4、实现图片二值化(代码)

(1)是使用C++和OpenCV库实现:

(2)纯C++代码实现,不要借助其他库


1、了解下图片二值化的含义

(1)图片二值化是一种图像处理技术,它将彩色或灰度图像转换为只包含两个颜色的图像,通常是黑色和白色。这种转换是通过将图像中的每个像素的灰度值与一个阈值进行比较来实现的。

(2)在二值化过程中,如果像素的灰度值大于或等于阈值,则将该像素设置为白色(或亮色),否则将其设置为黑色(或暗色)。这样,图像中的每个像素都被映射到黑色或白色之一,从而产生了一个只有两种颜色的二值图像。

(3)二值化可以用于很多应用,例如文字识别、图像分割、形状检测等。通过将图像转换为二值图像,可以突出显示目标物体的轮廓和特征,并简化后续的图像处理任务。

2、进行图像二值化处理的方法

进行图像二值化处理的方法有多种,下面介绍两种常用的方法:

(1)全局阈值法(Global Thresholding):

该方法假设整个图像的前景和背景具有明显的灰度差异,并且通过选择一个全局阈值来将图像分为两个部分。

具体步骤如下:

1)将彩色或灰度图像转换为灰度图像。

2)选择一个合适的全局阈值。

3)遍历图像中的每个像素,如果像素的灰度值大于等于阈值,则将其设置为白色;否则将其设置为黑色。

(2)自适应阈值法(Adaptive Thresholding):

该方法考虑到图像不同区域的光照条件可能不同,因此使用局部阈值来对图像进行分割。

具体步骤如下:

1)将彩色或灰度图像转换为灰度图像。

2)将图像分成多个小的局部区域。

3)对每个局部区域计算一个适应性阈值。

4)遍历图像中的每个像素,根据所在的局部区域的阈值将像素设置为黑色或白色。

这些方法可以使用图像处理库或软件实现,例如OpenCV、Python的PIL库等。具体的实现方式和参数选择会根据具体的图像和需求而有所不同。

3、如何选择合适的阈值进行二值化

选择合适的阈值进行图像二值化是一个关键的步骤,下面介绍几种常用的阈值选择方法:

(1)固定阈值法(Fixed Thresholding):该方法是最简单的阈值选择方法,直接根据经验或试验确定一个固定的阈值。例如,将阈值设为128,即大于等于128的像素设置为白色,小于128的像素设置为黑色。

(2)Otsu's 阈值法:Otsu's 阈值法是一种自动选择阈值的方法,它能够找到一个最佳的阈值,使得分割后的图像类间方差最大化。这种方法适用于具有双峰直方图的图像,其中前景和背景的灰度值分布明显不同。

(3)自适应阈值法(Adaptive Thresholding):自适应阈值法根据图像局部区域的灰度特性来选择阈值。它将图像分成多个小的局部区域,并对每个区域计算一个适应性阈值。这种方法适用于光照条件不均匀的图像。

(4)大津法与自适应阈值法的结合:有时候可以结合使用大津法和自适应阈值法,先使用大津法确定一个全局阈值,然后再使用自适应阈值法对图像进行细分割。

选择合适的阈值方法取决于图像的特性和需求。一般来说,如果图像具有明显的前景和背景差异,固定阈值法可能是一个简单有效的选择。如果图像的灰度分布复杂或光照条件不均匀,可以考虑使用自适应阈值法或Otsu's 阈值法。

4、实现图片二值化(代码)

(1)是使用C++和OpenCV库实现:
cpp 复制代码
#include <opencv2/opencv.hpp>

int main() 
{
    // 读取图像
    cv::Mat image = cv::imread("input.jpg", cv::IMREAD_GRAYSCALE);

    // 检查图像是否成功读取
    if (image.empty()) {
        std::cout << "无法读取图像文件" << std::endl;
        return -1;
    }

    // 应用全局阈值法进行二值化
    cv::Mat binaryImage;
    double thresholdValue = 128; // 阈值设为128

    double maxValue = 255; // 最大值设为255

    cv::threshold(image, binaryImage, thresholdValue, maxValue, cv::THRESH_BINARY);

    // 显示原始图像和二值化后的图像
    cv::imshow("Original Image", image);
    cv::imshow("Binary Image", binaryImage);
    cv::waitKey(0);

    return 0;
}
(2)纯C++代码实现,不要借助其他库
cpp 复制代码
#include <iostream>
#include <fstream>

struct RGB {
    unsigned char r, g, b;
};

int main() 
{
    // 读取图像
    std::ifstream file("input.bmp", std::ios::binary);

    if (!file) 
    {
        std::cout << "无法打开图像文件" << std::endl;
        return -1;
    }

    // 读取图像头信息
    char header[54];
    file.read(header, sizeof(header));

    int width = *(int*)&header[18];
    int height = *(int*)&header[22];
    int imageSize = width * height;

    // 分配内存并读取图像数据
    RGB* imageData = new RGB[imageSize];
    file.read((char*)imageData, imageSize * sizeof(RGB));
    file.close();

    // 将彩色图像转换为灰度图像
    unsigned char* grayImage = new unsigned char[imageSize];

    for (int i = 0; i < imageSize; i++) 
    {
        grayImage[i] = (imageData[i].r + imageData[i].g + imageData[i].b) / 3;
    }

    // 应用阈值进行二值化
    unsigned char thresholdValue = 128;

    for (int i = 0; i < imageSize; i++) 
    {
        if (grayImage[i] >= thresholdValue) 
            grayImage[i] = 255; // 白色
        else 
            grayImage[i] = 0; // 黑色
    }

    // 保存二值化后的图像
    std::ofstream outputFile("output.bmp", std::ios::binary);

    if (!outputFile) 
    {
        std::cout << "无法保存图像文件" << std::endl;
        return -1;
    }

    // 写入图像头信息
    outputFile.write(header, sizeof(header));

    // 写入二值化后的图像数据
    outputFile.write((char*)grayImage, imageSize);
    outputFile.close();

    delete[] imageData;
    delete[] grayImage;

    return 0;
}

在上述代码中,我们使用C++的文件输入输出流来读取和保存图像文件。首先,我们读取图像的头信息,并根据宽度和高度计算图像数据的大小。然后,我们分配内存并读取彩色图像数据。接下来,我们将彩色图像转换为灰度图像,通过对每个像素的RGB值求平均来计算灰度值。最后,我们应用阈值进行二值化处理,将灰度值大于等于阈值的像素设置为白色(255),小于阈值的像素设置为黑色(0)。最后,我们保存二值化后的图像。

**请注意,**上述代码假设输入图像为24位位图(BMP)格式,并且图像文件名为"input.bmp"。你可以根据实际情况修改文件名和图像格式。此外,该代码只适用于处理较小的图像,如果要处理更大的图像,可能需要优化内存使用和读写操作。

相关推荐
上海合宙LuatOS43 分钟前
直接抄作业!Air780E模组LuatOS开发:位运算(bit)示例
人工智能·单片机·嵌入式硬件·物联网·硬件工程·iot
池央1 小时前
深度学习模型:卷积神经网络(CNN)
人工智能·深度学习·cnn
deephub1 小时前
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
人工智能·python·机器学习·scikit-learn
知来者逆1 小时前
首次公开用系统审查与评估大语言模型安全性的数据集
人工智能·机器学习·语言模型·自然语言处理·llm·大语言模型
HyperAI超神经2 小时前
NeurIPS 2024 有效投稿达 15,671 篇,数据集版块内容丰富
人工智能·开源·自动驾驶·数据集·多模态·化学光谱·neurips 2024
uhakadotcom3 小时前
AI搜索引擎的尽头是电商?从perplexity开始卖货说起...
前端·人工智能·后端
KeKe_L3 小时前
深度学习—参数初始化及激活函数Day35
人工智能·深度学习
virtaitech3 小时前
探索 GAN 的演变之路
人工智能·神经网络·生成对抗网络
黑色叉腰丶大魔王3 小时前
《掩码语言模型(Masked Language Model, MLM)》
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客3 小时前
从 App Search 到 Elasticsearch — 挖掘搜索的未来
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库开发