pytorch 笔记:GRU

1 介绍

对于输入序列中的每个元素,每一层都计算以下函数:

  • ht 是t时刻 的隐藏状态
  • xt 是t时刻 的输入
  • ht−1 是 t-1时刻 同层的隐藏状态或 0时刻 的初始隐藏状态
  • rt,zt,nt 分别是重置门、更新门和新门。
  • σ 是 sigmoid 函数
  • ∗ 是 Hadamard 乘积。

在多层GRU中,第 l 层的输入(对于 l≥2)是前一层的隐藏状态 乘以概率 dropout

2 基本使用方法

python 复制代码
torch.nn.GRU(self, 
    input_size, 
    hidden_size, 
    num_layers=1, 
    bias=True, 
    batch_first=False, 
    dropout=0.0, 
    bidirectional=False,    
    device=None, 
    dtype=None)

3 参数说明

|---------------|--------------------------------------------------------------------|
| input_size | 输入 x 中预期的特征数 |
| hidden_size | 隐藏状态 h 的特征数 |
| num_layers | GRU层数 |
| bias | 如果为 False,则该层不使用偏置权重bi,bh |
| batch_first | 如果为 True,则输入和输出张量以(batch, seq, feature)提供,而不是(seq, batch, feature) |
| dropout | 如果非零,则在除最后一层之外的每个 GRU 层的输出上引入一个 Dropout 层,其中 dropout 概率等于 dropout |
| bidirectional | 如果为 True,成为双向 GRU。默认值为 False |

输入:input (seq_len,batch,input_size), h_0(D*num_layers,batch,hidden_size) D表示单向还是双向GRU

输出:output(seq_len,D*hidden_size),h_n(D*num_layers,batch,hidden_size)

4 举例

python 复制代码
import torch.nn as nn

rnn = nn.GRU(input_size=5,hidden_size=10,num_layers=2)

input_x = torch.randn(7, 3, 5)
#seq_len,batch,input_size

h0 = torch.randn(2, 3, 10)
#D*num_layer,batch,hidden_size

output, hn = rnn(input_x, h0)
output.shape, hn.shape,output, hn
#seq_len,batch,input_size D*num_layer,batch,hidden_size
'''
(torch.Size([7, 3, 10]),
 torch.Size([2, 3, 10]),
 tensor([[[ 2.3096e-01,  4.7877e-01, -6.0747e-02,  3.1251e-01,  4.4528e-01,
           -2.6670e-01, -1.1168e+00,  7.3444e-01, -8.5343e-01, -8.6078e-02],
          [ 1.4765e+00, -4.4738e-01,  2.9812e-01, -6.6684e-01,  4.5928e-01,
            1.5543e+00, -2.7558e-01, -7.5153e-01,  5.0880e-01,  6.0543e-02],
          [ 8.9311e-01,  4.0004e-01,  1.6901e-01,  1.5932e-01, -1.2210e-01,
            3.0321e-01, -2.8612e-01, -1.4686e-01,  2.8579e-01,  1.1582e-02]],
 
         [[ 3.2400e-01,  4.1382e-01, -1.6979e-01,  9.6827e-02,  4.6004e-01,
           -4.7673e-02, -5.0143e-01,  4.6305e-01, -6.7894e-01,  8.7199e-04],
          [ 1.0779e+00, -1.7995e-02,  1.4842e-01, -4.0097e-01,  2.1145e-01,
            1.0362e+00, -3.9766e-01, -5.6097e-01,  3.0160e-01,  1.4931e-02],
          [ 6.1099e-01,  3.5822e-01,  9.1912e-02, -6.6886e-02,  8.1180e-02,
            2.2922e-01, -1.2506e-01,  2.9601e-02,  2.8049e-02, -1.5160e-02]],
 
         [[ 3.4037e-01,  3.0256e-01, -9.5463e-02, -1.0667e-01,  4.1159e-01,
           -1.7158e-02, -1.6656e-01,  3.3041e-01, -4.9750e-01, -9.4554e-02],
          [ 7.2198e-01,  1.1721e-01,  5.7578e-02, -1.4264e-01,  4.4159e-02,
            7.4929e-01, -2.6565e-01, -3.7547e-01,  1.3828e-01,  6.9896e-02],
          [ 4.5888e-01,  2.9849e-01,  1.1400e-01, -1.4953e-01,  1.8319e-01,
            1.2005e-01, -1.0588e-01,  1.2678e-01, -9.6599e-02, -6.3649e-02]],
 
         [[ 2.6923e-01,  1.9539e-01, -8.3442e-02, -1.0092e-01,  2.9727e-01,
            5.5752e-02, -1.6502e-01,  1.5522e-01, -3.3283e-01, -1.5289e-02],
          [ 5.0674e-01,  2.2620e-01, -1.6900e-02, -1.6849e-02,  1.3829e-01,
            3.0847e-01, -1.6965e-01, -1.9627e-01,  3.3316e-02,  6.3073e-02],
          [ 3.9663e-01,  3.0165e-01, -1.2318e-02, -1.4176e-01,  2.3552e-01,
           -3.8588e-02, -8.2455e-03,  1.6961e-01, -1.3624e-01, -7.3225e-03]],
 
         [[ 2.4548e-01,  1.7003e-01, -1.9854e-01, -4.2608e-02,  2.2749e-01,
            6.0757e-02, -7.5942e-02,  1.0205e-01, -2.2418e-01,  1.1453e-01],
          [ 3.5747e-01,  1.6106e-01, -2.9625e-02,  7.5182e-02,  7.6844e-02,
            2.4100e-01, -7.6047e-02, -6.7489e-02, -3.3757e-02,  1.1799e-01],
          [ 3.1698e-01,  1.8008e-01, -5.1838e-02, -9.3295e-02,  1.7627e-01,
            2.4971e-02, -2.4372e-02,  1.4522e-01, -1.1888e-01,  3.5780e-02]],
 
         [[ 1.8998e-01,  9.6675e-02, -9.7632e-02, -8.5483e-02,  1.2471e-01,
            1.4351e-01, -3.0885e-02,  1.0894e-01, -1.8797e-01,  3.5201e-02],
          [ 2.8278e-01,  1.7304e-01, -1.9512e-02,  7.8874e-02,  1.4434e-01,
            1.0537e-01, -8.5619e-02,  2.5765e-02, -9.0284e-02,  9.8876e-02],
          [ 2.3387e-01,  8.8567e-02, -3.5850e-02, -2.8561e-02,  1.2145e-01,
            1.1404e-01, -1.1314e-01,  7.1272e-02, -1.0356e-01,  7.2997e-02]],
 
         [[ 1.5414e-01,  8.1896e-02, -1.4372e-01, -4.9761e-02,  8.5839e-02,
            1.7213e-01, -3.9533e-02,  4.7469e-02, -1.3332e-01,  8.3625e-02],
          [ 2.3274e-01,  1.5516e-01, -4.0695e-02,  3.1735e-02,  1.9340e-01,
            4.3769e-03, -4.9590e-02,  6.0317e-02, -1.0783e-01,  4.7750e-02],
          [ 1.3002e-01,  1.2265e-02, -3.3010e-03,  2.6260e-02,  6.5244e-02,
            2.3599e-01, -2.3918e-01, -4.4371e-02, -9.0464e-02,  1.1589e-01]]],
        grad_fn=<StackBackward0>),
 tensor([[[ 0.4118, -0.0513, -0.2540, -0.2115, -0.4503,  0.0357, -0.2615,
           -0.2243,  0.0580, -0.1405],
          [ 0.2653,  0.5365, -0.5024, -0.3466, -0.1986,  0.2726, -0.1399,
           -0.1821, -0.3203,  0.1749],
          [ 0.6847, -0.2840, -0.1549,  0.3359, -0.0230, -0.0229, -0.2775,
           -0.1442, -0.1158, -0.2203]],
 
         [[ 0.1541,  0.0819, -0.1437, -0.0498,  0.0858,  0.1721, -0.0395,
            0.0475, -0.1333,  0.0836],
          [ 0.2327,  0.1552, -0.0407,  0.0317,  0.1934,  0.0044, -0.0496,
            0.0603, -0.1078,  0.0477],
          [ 0.1300,  0.0123, -0.0033,  0.0263,  0.0652,  0.2360, -0.2392,
           -0.0444, -0.0905,  0.1159]]], grad_fn=<StackBackward0>))
'''
相关推荐
努力变厉害的小超超1 小时前
ArkTS中的组件基础、状态管理、样式处理、class语法以及界面渲染
笔记·鸿蒙
aloha_7896 小时前
从零记录搭建一个干净的mybatis环境
java·笔记·spring·spring cloud·maven·mybatis·springboot
dsywws7 小时前
Linux学习笔记之vim入门
linux·笔记·学习
丕羽9 小时前
【Pytorch】基本语法
人工智能·pytorch·python
A-超9 小时前
vue3展示pag格式动态图
笔记
u01015265810 小时前
STM32F103C8T6学习笔记2--LED流水灯与蜂鸣器
笔记·stm32·学习
weixin_5182850510 小时前
深度学习笔记10-多分类
人工智能·笔记·深度学习
丘狸尾10 小时前
ubuntu【桌面】 配置NAT模式固定IP
笔记
王俊山IT10 小时前
C++学习笔记----10、模块、头文件及各种主题(二)---- 预处理指令
开发语言·c++·笔记·学习
慕卿扬10 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn