输出最长公共字串

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列

示例

示例 1:

复制代码
输入:text1 = "abcde", text2 = "ace" 
输出:"ace" 

示例 2:

复制代码
输入:text1 = "abc", text2 = "abc"
输出:"abc"

示例 3:

复制代码
输入:text1 = "abc", text2 = "def"
输出:""

思路

本质之前写过的最长公共子序列一样,先求出最长公共子序列的长度,然后根据长度在遍历两个字符串,组成真正的最长公共子序列。

代码如下

java 复制代码
	public String longestCommonSubsequenceToString(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] dp = new int[m + 1][n + 1];
        // 统计最长公共子序列
        for(int i = 1;i < dp.length;i++){
            for(int j = 1;j < dp[0].length;j++){
                if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                    dp[i][j] = 1 + dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
        // 记录最长公共子序列长度,
        int len = dp[m][n];
        char[] chars = new char[len];
        // 其实这里也不必定义char数组和记录最长公共子序列长度,直接使用StringBuilder来操作更简单,最后返回结果在reverse()一下就行。
        int i = m, j = n;
        // 从后向前遍历两个字符串
        while(i > 0 && j > 0){
        	// 相等就加入
            if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                chars[len - 1] = text1.charAt(i - 1);
                i--;
                j--;
                len--;
            }else if(dp[i - 1][j] > dp[i][j - 1]){
                i--;
            }else{
                j--;
            }
        }
        return new String(chars);
    }
相关推荐
闻缺陷则喜何志丹1 小时前
【动态规划】数位DP的原理、模板(封装类)
c++·算法·动态规划·原理·模板·数位dp
豆沙沙包?1 小时前
2025年--Lc194-516. 最长回文子序列(动态规划在字符串的应用,需要二刷)--Java版
java·算法·动态规划
豆沙沙包?5 小时前
2025年--Lc188--931. 下降路径最小和(多维动态规划,矩阵)--Java版
java·矩阵·动态规划
熬了夜的程序员5 小时前
【LeetCode】74. 搜索二维矩阵
线性代数·算法·leetcode·职场和发展·矩阵·深度优先·动态规划
前端小L1 天前
动态规划的“细节魔鬼”:子序列 vs 子数组 —— 最长重复子数组
算法·动态规划
贝塔实验室2 天前
频偏估计方法--快速傅里叶变换(FFT)估计法
网络协议·算法·数学建模·动态规划·信息与通信·信号处理·傅立叶分析
gsfl2 天前
两个数组的dp问题
动态规划
贝塔实验室2 天前
QPSK信号载波同步技术---四相Costas 环法
数学建模·fpga开发·硬件工程·动态规划·信息与通信·信号处理·傅立叶分析
熬了夜的程序员3 天前
【LeetCode】69. x 的平方根
开发语言·算法·leetcode·职场和发展·动态规划
qq_433554543 天前
C++ 完全背包时间优化、完全背包空间优化
开发语言·c++·动态规划