1.使用tensorflow

1.张量和操作

tensorflow对张量的操作实际上和numpy差不多,不够有所差距,numpy的数据可以随时被修改,但是tensorflow的数据要分情况。

(1).使用tf.Constant()

a = tf.Constant([[1,2,3],[4,5,6]])

这个矩阵就是2*3的矩阵,但是它无法被修改,只能读取。

除了不能修改,其实和numpy的使用方法

比如查看它的大小也可以用:a.shape

索引方式也一样,这里不做过得描述

(2).tensorflow提供的数据操作函数

比如加法: a + 10 可以使用函数 tf.add(a, 10);

矩阵的乘法为tf.matmul(),它提供的函数和numpy都差不多,但是有些不一样,比如求和.tf.reduce_sum(),求均值为tf.reduce_mean(),求最大值tf.reduce_max();

numpy也可以用于tensorflow中,转换为张量。

(3)类型转换

tensorflow中有个很麻烦的东西,整形+浮点型会失败,float32和float64相加也会失败,它不会自动执行类型转换,需要你手动操作。

tf.cast()可以用来进行转换,比如把a转为float64类型的

tf.cast(a, tf.float64)

(4).变量

tf.Constant无法被改变,固定好深度学习的参数后,可以使用这个类型的变量,但是如果需要对它进行训练,则必须要使用tf.Variable

我们对tf.Variable的修改也需要使用特定的函数assign

a[0,0].assign(10)

这样a的第一个值就变为了10,这个就相当于a[0,0] = 10

麻烦就是这个啦,必须通过相应的函数来操作;

(5).其他数据结构

tensorflow还有其他数据结构,比如稀疏张量(tf.SparseTensor),张量数组(tf.TensorArrray),不规则张量(tf.RaggedTensor),字符串张量(tf.string)等等

2.定制模型和算法

1.自定义损失函数

比如自定义一个Huber

def huber_fn(y_true, y_pred):

error = tf.abs(y_true - y_pred);

is_small_error = tf.abs(error) < 1#门限设置为1

squared_loss = tf.abs(error)-0.5

return tf.where(is_small_error, squared_loss, linear_loss)

可以在Keras模型中使用这个函数

model.compile(loss=huber_fn, opitimizer= 'adam');

2.保存和加载自定义组件的模型

keras会保存函数的名字,每次加载的适合需要提供一个字典,将函数名称映射到实际函数。一般而言,当加载包含自定义对象的模式时,需要将名称映射到对象。

model = keras.models.load_model("model.h5", custom_objects = {'huber_fn':huber_fn})

如果需要更为灵活的函数,设定上面函数的阈值,不仅仅等于1

def more_freedom_huber(limit = 1.0):

def huber_fn(y_true, y_pred):

error = tf.abs(y_true - y_pred);

is_small_error = tf.abs(error) < 1#门限设置为1

squared_loss = tf.abs(error)-0.5

return tf.where(is_small_error, squared_loss, linear_loss)

return huber_fn
model = keras.models.load_model("model.h5", custom_objects = {'huber_fn':more_freedom_huber(2.0)})

还可以通过继承keras.losses.Loss类的子类,然后实现get_config()方法来解决问题

比如自定义激活函数,初始化方法,正则化和约束。

如果函数需要和模型一起保存,必须继承相应的对象,比如keras.regularizers.Regularizer,

相关推荐
SsummerC1 小时前
【leetcode100】数组中的第K个最大元素
python·算法·leetcode
伊玛目的门徒1 小时前
解决backtrader框架下日志ValueError: I/O operation on closed file.报错(jupyternotebook)
python·backtrader·量化·日志管理·回测
java1234_小锋1 小时前
一周学会Pandas2 Python数据处理与分析-编写Pandas2 HelloWord项目
python·pandas·python数据分析·pandas2
凯强同学2 小时前
第十四届蓝桥杯大赛软件赛省赛Python 大学 C 组:7.翻转
python·算法·蓝桥杯
耘瞳科技2 小时前
喜讯 | 耘瞳科技视觉检测与测量装备荣膺“2024机器视觉创新产品TOP10”
人工智能·科技·视觉检测
__Benco5 小时前
OpenHarmony子系统开发 - DFX(一)
人工智能·harmonyos
小西几哦5 小时前
3D点云配准RPM-Net模型解读(附论文+源码)
人工智能·pytorch·3d
CareyWYR5 小时前
每周AI论文速递(250331-250404)
人工智能
码视野5 小时前
基于快速开发平台与智能手表的区域心电监测与AI预警系统(源码+论文+部署讲解等)
人工智能·智能手表·毕业论文·计算机论文·物联网论文