PyTorch 从tensor.grad 看 backward(权重参数) 和 gradient accumulated

1. 新建一个自变量 tensor x

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
print(x)

1. 输出:

python 复制代码
tensor([1.], requires_grad=True)

2. 写一个 forward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

3. y, z 都 backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

y.backward()
z.backward()

print(x.grad)

3.输出

python 复制代码
tensor([5.])

4. 单独 y backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

y.backward()

print(x.grad)

4. 输出

python 复制代码
tensor([2.])

5. 单独 z backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

z.backward()

print(x.grad)

5. 输出

python 复制代码
tensor([3.])

6. tensor.grad.zero_()

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
y.backward()
print(x.grad)

x.grad.zero_()
z = x**3
z.backward()
print(x.grad)

输出:

python 复制代码
tensor([2.])
tensor([3.])

向量形式

注意由于 x 此时不是标量,所以 执行 y.backward()的时候必须给一个参数。

参数的含义是权重。

gradient=torch.ones(y.size()) 中的 gradient 参数指定了每个 y 元素对于 x的梯度的权重。在这里,gradient 设置为全1的张量,表示每个 y 元素对于损失函数的梯度权重都是1。

这意味着所有的梯度将被等权重地传播回输入 x。如果你想要为不同的元素分配不同的权重,你可以修改 gradient 参数以实现不同的梯度计算策略。

python 复制代码
import torch

x = torch.tensor([[-1.5], [2.7]], requires_grad=True)
print(x)

y = torch.empty([3,1])
y[0] = x[0]**2
y[1] = x[1]**3
y[2] = x[1]**4
y.backward(gradient=torch.ones(y.size()))
print(x.grad)


dy0 = 2*x[0]
dy1 = 3*x[1]**2
dy2 = 4*x[1]**3

dy_dx0 = dy0
dy_dx1 = dy1+dy2

print(dy_dx0)
print(dy_dx1)

输出

python 复制代码
tensor([[-1.5000],
        [ 2.7000]], requires_grad=True)

tensor([[ -3.0000],
        [100.6020]])
        
tensor([-3.], grad_fn=<MulBackward0>)
tensor([100.6020], grad_fn=<AddBackward0>)

权重不一样

python 复制代码
import torch

x = torch.tensor([[-1.5], [2.7]], requires_grad=True)
print(x)

y = torch.empty([3,1])
y[0] = x[0]**2
y[1] = x[1]**3
y[2] = x[1]**4
y.backward(gradient=torch.tensor([[0.5],[-2.],[1.5]]))
print(x.grad)


dy0 = 2*x[0]
dy1 = 3*x[1]**2
dy2 = 4*x[1]**3

dy_dx0 = 0.5*dy0
dy_dx1 = -2*dy1+1.5*dy2

print(dy_dx0)
print(dy_dx1)

输出

python 复制代码
tensor([[-1.5000],
        [ 2.7000]], requires_grad=True)
tensor([[-1.5000],
        [74.3580]])
tensor([-1.5000], grad_fn=<MulBackward0>)
tensor([74.3580], grad_fn=<AddBackward0>)
相关推荐
Troc_wangpeng20 分钟前
机器学习的转型
人工智能·机器学习
小言从不摸鱼23 分钟前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
湫ccc24 分钟前
Bert框架详解(上)
人工智能·深度学习·bert
_.Switch1 小时前
Serverless架构与自动化运维
运维·python·缓存·自动化·运维开发
影雀1 小时前
大模型开发企业智能小助手应用上篇
python
过期动态1 小时前
详解Python面向对象程序设计
开发语言·python·pycharm·django
小码贾1 小时前
评估 机器学习 回归模型 的性能和准确度
人工智能·机器学习·回归·scikit-learn·性能评估
不是AI1 小时前
【持续更新】【NLP项目】【自然语言处理】智能聊天机器人——“有问必答”【Chatbot】第2章、《模式一:问候模式》
人工智能·自然语言处理·机器人
YRr YRr2 小时前
深度学习:Transformer 详解
人工智能·深度学习·transformer
兜里有糖请分享2 小时前
Python中序列化/反序列化JSON格式的数据
爬虫·python