PyTorch 从tensor.grad 看 backward(权重参数) 和 gradient accumulated

1. 新建一个自变量 tensor x

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
print(x)

1. 输出:

python 复制代码
tensor([1.], requires_grad=True)

2. 写一个 forward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

3. y, z 都 backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

y.backward()
z.backward()

print(x.grad)

3.输出

python 复制代码
tensor([5.])

4. 单独 y backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

y.backward()

print(x.grad)

4. 输出

python 复制代码
tensor([2.])

5. 单独 z backward

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
z = x**3

z.backward()

print(x.grad)

5. 输出

python 复制代码
tensor([3.])

6. tensor.grad.zero_()

python 复制代码
import torch

x = torch.ones(1, requires_grad=True)
y = x**2
y.backward()
print(x.grad)

x.grad.zero_()
z = x**3
z.backward()
print(x.grad)

输出:

python 复制代码
tensor([2.])
tensor([3.])

向量形式

注意由于 x 此时不是标量,所以 执行 y.backward()的时候必须给一个参数。

参数的含义是权重。

gradient=torch.ones(y.size()) 中的 gradient 参数指定了每个 y 元素对于 x的梯度的权重。在这里,gradient 设置为全1的张量,表示每个 y 元素对于损失函数的梯度权重都是1。

这意味着所有的梯度将被等权重地传播回输入 x。如果你想要为不同的元素分配不同的权重,你可以修改 gradient 参数以实现不同的梯度计算策略。

python 复制代码
import torch

x = torch.tensor([[-1.5], [2.7]], requires_grad=True)
print(x)

y = torch.empty([3,1])
y[0] = x[0]**2
y[1] = x[1]**3
y[2] = x[1]**4
y.backward(gradient=torch.ones(y.size()))
print(x.grad)


dy0 = 2*x[0]
dy1 = 3*x[1]**2
dy2 = 4*x[1]**3

dy_dx0 = dy0
dy_dx1 = dy1+dy2

print(dy_dx0)
print(dy_dx1)

输出

python 复制代码
tensor([[-1.5000],
        [ 2.7000]], requires_grad=True)

tensor([[ -3.0000],
        [100.6020]])
        
tensor([-3.], grad_fn=<MulBackward0>)
tensor([100.6020], grad_fn=<AddBackward0>)

权重不一样

python 复制代码
import torch

x = torch.tensor([[-1.5], [2.7]], requires_grad=True)
print(x)

y = torch.empty([3,1])
y[0] = x[0]**2
y[1] = x[1]**3
y[2] = x[1]**4
y.backward(gradient=torch.tensor([[0.5],[-2.],[1.5]]))
print(x.grad)


dy0 = 2*x[0]
dy1 = 3*x[1]**2
dy2 = 4*x[1]**3

dy_dx0 = 0.5*dy0
dy_dx1 = -2*dy1+1.5*dy2

print(dy_dx0)
print(dy_dx1)

输出

python 复制代码
tensor([[-1.5000],
        [ 2.7000]], requires_grad=True)
tensor([[-1.5000],
        [74.3580]])
tensor([-1.5000], grad_fn=<MulBackward0>)
tensor([74.3580], grad_fn=<AddBackward0>)
相关推荐
小鸡吃米…38 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS2 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能