NOIP2023模拟10联测31 涂鸦

题目大意

有一面由 n × m n\times m n×m个格子组成的墙,每个格子要么是黑色,要么是白色。你每次将会进行这样的操作:等概率随机选择一个位置 ( x , y ) (x,y) (x,y)和一个颜色 c c c(黑色或白色),( 1 ≤ x ≤ n , 1 ≤ y ≤ m 1\leq x\leq n,1\leq y\leq m 1≤x≤n,1≤y≤m,选择任意 ( x , y , c ) (x,y,c) (x,y,c)的组合的概率都是 1 2 n m \dfrac{1}{2nm} 2nm1),然后将 ( x , y ) (x,y) (x,y)左上角的所有格子的颜色都涂成 c c c,也就是将所有满足 1 ≤ x ′ ≤ x , 1 ≤ y ′ ≤ y 1\leq x'\leq x,1\leq y'\leq y 1≤x′≤x,1≤y′≤y的格子 ( x ′ , y ′ ) (x',y') (x′,y′)的颜色涂成 c c c。次操作的代价为涂的格子的数量,即 x × y x\times y x×y。给定初始状态和终止状态,问期望要花费多少代价才能将墙面从初始状态涂成终止状态。

1 ≤ n , m ≤ 5 1\leq n,m\leq 5 1≤n,m≤5

题解

看到 n n n和 m m m都比较小,我们考虑用状压 D P DP DP。设 f s f_s fs表示当前墙面的状态为 s s s时要到最终状态的期望代价,可以列出 2 n m 2^{nm} 2nm个方程,用高斯消元解方程即可。

这样做的时间复杂度为 O ( 2 3 n m ) O(2^{3nm}) O(23nm),我们考虑优化。

我们考虑减少状态的数量。我们发现,如果一个位置的右下角的某个位置与最终状态不同,则这个位置一定会被修改,那这个位置当前的值就不重要了。

设 p i , j p_{i,j} pi,j表示 ( i , j ) (i,j) (i,j)右下角的位置是否已经全部变得和终止状态一样,可以发现 p i , j p_{i,j} pi,j为 1 1 1的状态一定在右下角呈阶梯状的。举个例子:

其中橙色部分为 p i , j = 1 p_{i,j}=1 pi,j=1的格子。

那么,总状态数为 ( n + m n ) \binom{n+m}{n} (nn+m)。我们可以用 d f s dfs dfs求出所有可能的状态。

对于每个状态,我们考虑它能到达哪些状态。我们将每种状态中 p i , j = 1 p_{i,j}=1 pi,j=1的格子设为与终止状态相同, p i , j = 0 p_{i,j}=0 pi,j=0的格子设为与终止状态相反。然后将左上角的一个矩形全部变为黑色或白色,再判断改变颜色后的状态是什么状态。

用上述方法求出转移方程,再用高斯消元求解即可。

时间复杂度为 O ( ( n + m n ) 3 ) O(\binom{n+m}{n}^3) O((nn+m)3), ( n + m n ) \binom{n+m}{n} (nn+m)的最大值为 252 252 252,是可以过的。

code

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const long long mod=998244353;
int n,m,S,bg=0,ed=0,sum=0,tot=0,w[10][10];
long long ans=0,a[305][305];
char s[10][10],t[10][10];
array<int,5>v;
map<array<int,5>,int>mp;
void init(){
	S=(1<<n*m)-1;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			for(int x=0;x<=i;x++){
				for(int y=0;y<=j;y++){
					w[i][j]|=1<<(x*m+y);
				}
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			sum+=2*i*j;
		}
	}
}
void dfs(int t,int now){
	if(t==n){
		mp[v]=++tot;
		return;
	}
	for(int i=now;i<=m;i++){
		v[t]=i;dfs(t+1,i);
	}
}
int gtid(int s){
	array<int,5>b;
	for(int i=0;i<5;i++) b[i]=0;
	for(int i=0;i<n;i++){
		b[i]=m;
		for(int j=0;j<m;j++){
			int wt=(s>>(i*m+j))&1;
			if(wt==(t[i][j]=='W')) b[i]=m-j-1;
		}
	}
	for(int i=n-2;i>=0;i--) b[i]=min(b[i],b[i+1]);
	return mp[b];
}
long long mi(long long t,long long v){
	if(!v) return 1;
	long long re=mi(t,v/2);
	re=re*re%mod;
	if(v&1) re=re*t%mod;
	return re;
}
void gauss(){
	for(int i=1;i<=tot;i++){
		for(int j=i;j<=tot;j++){
			if(a[j][i]){
				swap(a[j],a[i]);break;
			}
		}
		for(int j=1;j<=tot;j++){
			if(i==j) continue;
			long long dv=(mod-1)*a[j][i]%mod*mi(a[i][i],mod-2)%mod;
			for(int k=1;k<=tot+1;k++) a[j][k]=(a[j][k]+dv*a[i][k])%mod;
		}
	}
}
int main()
{
//	freopen("graffiti.in","r",stdin);
//	freopen("graffiti.out","w",stdout);
	scanf("%d%d",&n,&m);
	init();
	for(int i=0;i<n;i++) scanf("%s",s[i]);
	for(int i=0;i<n;i++) scanf("%s",t[i]);
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			bg|=(s[i][j]=='B')<<(i*m+j);
			ed|=(t[i][j]=='B')<<(i*m+j);
		}
	}
	dfs(0,0);
	for(auto p:mp){
		int s=0,id=p.second;
		for(int i=0;i<n;i++){
			for(int j=0;j<m;j++){
				if(j<m-p.first[i])
				s|=(t[i][j]=='W')<<(i*m+j);
				else
				s|=(t[i][j]=='B')<<(i*m+j);
			}
		}
		a[id][id]=2*n*m;
		if(s==ed) continue;
		a[id][tot+1]=sum;
		for(int i=0;i<n;i++){
			for(int j=0;j<m;j++){
				int tmp=gtid(s|w[i][j]);
				a[id][tmp]=(a[id][tmp]-1+mod)%mod;
				tmp=gtid(s&(S^w[i][j]));
				a[id][tmp]=(a[id][tmp]-1+mod)%mod;
			}
		}
	}
	gauss();
	int tmp=gtid(bg);
	ans=a[tmp][tot+1]*mi(a[tmp][tmp],mod-2)%mod;
	printf("%lld",ans);
	return 0;
}
相关推荐
凌云行者33 分钟前
OpenGL入门005——使用Shader类管理着色器
c++·cmake·opengl
凌云行者37 分钟前
OpenGL入门006——着色器在纹理混合中的应用
c++·cmake·opengl
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
可均可可2 小时前
C++之OpenCV入门到提高004:Mat 对象的使用
c++·opencv·mat·imread·imwrite
白子寰2 小时前
【C++打怪之路Lv14】- “多态“篇
开发语言·c++
小芒果_012 小时前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
gkdpjj2 小时前
C++优选算法十 哈希表
c++·算法·散列表
王俊山IT2 小时前
C++学习笔记----10、模块、头文件及各种主题(一)---- 模块(5)
开发语言·c++·笔记·学习
-Even-2 小时前
【第六章】分支语句和逻辑运算符
c++·c++ primer plus
我是谁??3 小时前
C/C++使用AddressSanitizer检测内存错误
c语言·c++