自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云)

前言

如果写过SLAM14讲第一次的作业,或者看过我之前的运行ORB_SLAM2教程应该都安装过OpenCV了,如果没有安装,没关系,可以看我之前的博客,里面有如何安装OpenCV。

链接: 运行ORB-SLAM2(含OpenCV的安装)

文章目录


1.OpenCV的图像操作

让我们先来看一段代码,学习一下OpenCV的函数调用。

改代码中,演示了如下几个操作:图像读取,显示,像素遍历,复制,赋值等。大部分的注解已经写在代码中。编译该程序时,需要在CMakeLists.txt中添加OpenCV的头文件,然后将程序链接到库文件上。

imageBasics.cpp:

cpp 复制代码
#include <iostream>
#include <chrono>
using namespace std;

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

int main ( int argc, char** argv )
{
    // 读取argv[1]指定的图像
    cv::Mat image;
    image = cv::imread ( argv[1] ); //cv::imread函数读取指定路径下的图像
    // 判断图像文件是否正确读取
    if ( image.data == nullptr ) //数据不存在,可能是文件不存在
    {
        cerr<<"文件"<<argv[1]<<"不存在."<<endl;
        return 0;
    }
    
    // 文件顺利读取, 首先输出一些基本信息
    cout<<"图像宽为"<<image.cols<<",高为"<<image.rows<<",通道数为"<<image.channels()<<endl;
    cv::imshow ( "image", image );      // 用cv::imshow显示图像
    cv::waitKey ( 0 );                  // 暂停程序,等待一个按键输入
    // 判断image的类型
    if ( image.type() != CV_8UC1 && image.type() != CV_8UC3 )
    {
        // 图像类型不符合要求
        cout<<"请输入一张彩色图或灰度图."<<endl;
        return 0;
    }

    // 遍历图像, 请注意以下遍历方式亦可使用于随机像素访问
    // 使用 std::chrono 来给算法计时
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    for ( size_t y=0; y<image.rows; y++ )
    {
        // 用cv::Mat::ptr获得图像的行指针
        unsigned char* row_ptr = image.ptr<unsigned char> ( y );  // row_ptr是第y行的头指针
        for ( size_t x=0; x<image.cols; x++ )
        {
            // 访问位于 x,y 处的像素
            unsigned char* data_ptr = &row_ptr[ x*image.channels() ]; // data_ptr 指向待访问的像素数据
            // 输出该像素的每个通道,如果是灰度图就只有一个通道
            for ( int c = 0; c != image.channels(); c++ )
            {
                unsigned char data = data_ptr[c]; // data为I(x,y)第c个通道的值
            }
        }
    }
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
    cout<<"遍历图像用时:"<<time_used.count()<<" 秒。"<<endl;

    // 关于 cv::Mat 的拷贝
    // 直接赋值并不会拷贝数据
    cv::Mat image_another = image;
    // 修改 image_another 会导致 image 发生变化
    image_another ( cv::Rect ( 0,0,100,100 ) ).setTo ( 0 ); // 将左上角100*100的块置零
    cv::imshow ( "image", image );
    cv::waitKey ( 0 );
    
    // 使用clone函数来拷贝数据
    cv::Mat image_clone = image.clone();
    image_clone ( cv::Rect ( 0,0,100,100 ) ).setTo ( 255 );
    cv::imshow ( "image", image );
    cv::imshow ( "image_clone", image_clone );
    cv::waitKey ( 0 );

    // 对于图像还有很多基本的操作,如剪切,旋转,缩放等,限于篇幅就不一一介绍了,请参看OpenCV官方文档查询每个函数的调用方法.
    cv::destroyAllWindows();
    return 0;
}

CMakeLists.txt:

cpp 复制代码
cmake_minimum_required( VERSION 2.8 )
project( imageBasics )

# 添加c++ 11标准支持
set( CMAKE_CXX_FLAGS "-std=c++11" )

# 寻找OpenCV库
find_package( OpenCV 3 REQUIRED )
# 添加头文件
include_directories( ${OpenCV_INCLUDE_DIRS} )

add_executable( imageBasics imageBasics.cpp )
# 链接OpenCV库
target_link_libraries( imageBasics ${OpenCV_LIBS} )

然后我们尝试使用OpenCV打开一张图片:

2.使用OpenCV进行RGB-D图像拼接(点云)


joinMap.cpp:

cpp 复制代码
#include <iostream>
#include <fstream>
using namespace std;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <Eigen/Geometry> 
#include <boost/format.hpp>  // for formating strings
#include <pcl/point_types.h> 
#include <pcl/io/pcd_io.h> 
#include <pcl/visualization/pcl_visualizer.h>
 
int main( int argc, char** argv )
{
    vector<cv::Mat> colorImgs, depthImgs;    // colorImgs:彩色图;depthImgs:深度图
    vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d>> poses;   // 相机位姿
    
	//iftream的对象假设为fin,fin在读取数据的时候会根据你的输出对象来选择输出的方式。
    ifstream fin("./pose.txt");
    if (!fin)
    {
        cerr<<"请在有pose.txt的目录下运行此程序"<<endl;
        return 1;
    }
    
    for ( int i=0; i<5; i++ )
    {
        boost::format fmt( "./%s/%d.%s" ); //图像文件格式
        colorImgs.push_back( cv::imread( (fmt%"color"%(i+1)%"png").str() ));
		/*
		cv::Mat img =cv::imread(argv[1],-1)
		函数原型Mat imread( const String& filename, int flags = IMREAD_COLOR );
		第一个参数是图片的绝对地址;
		第二个参数表示图片读入的方式(flags可以缺省,缺省时flags=1,表示以彩色图片方式读入图片);
		flags>0时表示以彩色方式读入图片;
		flags=0时表示以灰度图方式读入图片;
		flags<0时表示以图片的本来的格式读入图片;
		*/
        depthImgs.push_back( cv::imread( (fmt%"depth"%(i+1)%"pgm").str(), -1 )); // 使用-1读取原始图像
        
        double data[7] = {0};
        for ( auto& d:data )
            fin>>d; //将深度值文件一行一行读进d中
        Eigen::Quaterniond q( data[6], data[3], data[4], data[5] ); //旋转四元数
        Eigen::Isometry3d T(q);
        T.pretranslate( Eigen::Vector3d( data[0], data[1], data[2] )); //平移向量
        poses.push_back( T );
    }
    
    // 计算点云并拼接
    // 相机内参 
    double cx = 325.5;
    double cy = 253.5;
    double fx = 518.0;
    double fy = 519.0;
    double depthScale = 1000.0;
    
    cout<<"正在将图像转换为点云..."<<endl;
    
    // 定义点云使用的格式:这里用的是XYZRGB
    typedef pcl::PointXYZRGB PointT; 
    typedef pcl::PointCloud<PointT> PointCloud;
    
    // 新建一个点云
    PointCloud::Ptr pointCloud( new PointCloud ); 
    for ( int i=0; i<5; i++ )
    {
        cout<<"转换图像中: "<<i+1<<endl; 
        cv::Mat color = colorImgs[i]; //像素值 
        cv::Mat depth = depthImgs[i]; //每个像素值对应的深度值
        Eigen::Isometry3d T = poses[i]; //每张图片对应的位姿
        for ( int v=0; v<color.rows; v++ )
            for ( int u=0; u<color.cols; u++ )
            {
                unsigned int d = depth.ptr<unsigned short> ( v )[u]; // 深度值
				/*
				d==0:表示该像素点没有深度值(不可能),所以就抛弃该点,不再计算相机坐标系下的坐标值(X,Y,Z)
				*/
                if ( d==0 ) continue; // 为0表示没有测量到
				
                //point:相机坐标系下的坐标值(X,Y,Z)
				Eigen::Vector3d point; 
                point[2] = double(d)/depthScale; 
                point[0] = (u-cx)*point[2]/fx;
                point[1] = (v-cy)*point[2]/fy; 
				
				// pointWorld:世界坐标
                Eigen::Vector3d pointWorld = T*point;
                
				// p:点云(每个点云按照[XYZRGB]的格式表示)
                PointT p ;
                p.x = pointWorld[0];
                p.y = pointWorld[1];
                p.z = pointWorld[2];
                p.b = color.data[ v*color.step+u*color.channels() ];
                p.g = color.data[ v*color.step+u*color.channels()+1 ];
                p.r = color.data[ v*color.step+u*color.channels()+2 ];
                pointCloud->points.push_back( p );
            }
    }
    
    pointCloud->is_dense = false;
    cout<<"点云共有"<<pointCloud->size()<<"个点."<<endl;
    pcl::io::savePCDFileBinary("map.pcd", *pointCloud );
    return 0;
}

CMakeLists.txt:

cpp 复制代码
cmake_minimum_required( VERSION 2.8 )
project( joinMap )
 
set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )
 
# opencv 
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
 
# eigen 
include_directories( "/usr/include/eigen3/" )
 
# pcl 
find_package( PCL REQUIRED COMPONENT common io )
include_directories( ${PCL_INCLUDE_DIRS} )
add_definitions( ${PCL_DEFINITIONS} )
 
add_executable( joinMap joinMap.cpp )
target_link_libraries( joinMap ${OpenCV_LIBS} ${PCL_LIBRARIES} )

这里点云我们用的是pcl的库,所以需要安装一些pcl的库

安装命令如下:

c 复制代码
sudo apt-get install libpcl-dev
sudo apt-get install pcl-tools

然后就可以进行编译,进入我们创建的build文件夹

c 复制代码
cmake ..
make
cd ..
build/joinMap 
pcl_viewer map.pcd 

点云图就出来了:

放大点云图:

相关推荐
好喜欢吃红柚子6 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python11 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯20 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠23 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
plmm烟酒僧24 分钟前
Windows下QT调用MinGW编译的OpenCV
开发语言·windows·qt·opencv
Debroon32 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~39 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨40 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云1 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr