桥和割点,以及图的遍历树

目录

什么是桥

寻找桥的算法

代码实现

什么是割点

​寻找割点的算法

代码实现


什么是桥

寻找桥的算法

代码实现

java 复制代码
import java.util.ArrayList;

public class FindBridges {

    private Graph G;
    private boolean[] visited;

    private int ord[];
    private int low[];
    private int cnt;

    private ArrayList<Edge> res;

    public FindBridges(Graph G){

        this.G = G;
        visited = new boolean[G.V()];

        res = new ArrayList<>();
        ord = new int[G.V()];
        low = new int[G.V()];
        cnt = 0;

        for(int v = 0; v < G.V(); v ++)
            if(!visited[v])
                dfs(v, v);
    }

    private void dfs(int v, int parent){

        visited[v] = true;
        ord[v] = cnt;
        low[v] = ord[v];
        cnt ++;

        for(int w: G.adj(v))
            if(!visited[w]){
                dfs(w, v);
                low[v] = Math.min(low[v], low[w]);
                if(low[w] > ord[v])
                    res.add(new Edge(v, w));
            }
            else if(w != parent)
                low[v] = Math.min(low[v], low[w]);
    }

    public ArrayList<Edge> result(){
        return res;
    }

    public static void main(String[] args){

        Graph g = new Graph("g.txt");
        FindBridges fb = new FindBridges(g);
        System.out.println("Bridges in g : " + fb.result());

        Graph g2 = new Graph("g2.txt");
        FindBridges fb2 = new FindBridges(g2);
        System.out.println("Bridges in g2 : " + fb2.result());

        Graph g3 = new Graph("g3.txt");
        FindBridges fb3 = new FindBridges(g3);
        System.out.println("Bridges in g3 : " + fb3.result());

        Graph tree = new Graph("tree.txt");
        FindBridges fb_tree = new FindBridges(tree);
        System.out.println("Bridges in tree : " + fb_tree.result());
    }
}

什么是割点

寻找割点的算法

孩子的数量是根据树来说的,而不是看根节点有多少个邻边,遍历树不同孩子数量也不同。

代码实现

java 复制代码
import java.util.HashSet;

public class FindCutPoints {

    private Graph G;
    private boolean[] visited;

    private int[] ord;
    private int[] low;
    private int cnt;

    private HashSet<Integer> res;

    public FindCutPoints(Graph G){

        this.G = G;
        visited = new boolean[G.V()];

        res = new HashSet<>();
        ord = new int[G.V()];
        low = new int[G.V()];
        cnt = 0;

        for(int v = 0; v < G.V(); v ++)
            if(!visited[v])
                dfs(v, v);
    }

    private void dfs(int v, int parent){

        visited[v] = true;
        ord[v] = cnt;
        low[v] = ord[v];
        cnt ++;

        int child = 0;

        for(int w: G.adj(v))
            if(!visited[w]){
                dfs(w, v);
                low[v] = Math.min(low[v], low[w]);

                if(v != parent && low[w] >= ord[v])
                    res.add(v);

                child ++;
                if(v == parent && child > 1)
                    res.add(v);
            }
            else if(w != parent)
                low[v] = Math.min(low[v], ord[w]);
    }

    public HashSet<Integer> result(){
        return res;
    }

    public static void main(String[] args){

        Graph g = new Graph("g.txt");
        FindCutPoints fc = new FindCutPoints(g);
        System.out.println("Cut Points in g : " + fc.result());

        Graph g2 = new Graph("g2.txt");
        FindCutPoints fc2 = new FindCutPoints(g2);
        System.out.println("Cut Points in g2 : " + fc2.result());

        Graph g3 = new Graph("g3.txt");
        FindCutPoints fc3 = new FindCutPoints(g3);
        System.out.println("Cut Points in g3 : " + fc3.result());

        Graph tree = new Graph("tree.txt");
        FindCutPoints fc4 = new FindCutPoints(tree);
        System.out.println("Cut Points in tree : " + fc4.result());

    }
}
相关推荐
Foyo Designer10 分钟前
【 <二> 丹方改良:Spring 时代的 JavaWeb】之 Spring Boot 中的国际化:支持多语言的 RESTful API
java·spring boot·redis·后端·spring·缓存·restful
Stuild Stuil12 分钟前
Mysql 字段值批量自增或自减(坐标系数据,(x,y))
java·javascript·mysql
敲敲敲-敲代码16 分钟前
【Kettle安装】Kettle安装过程, 电脑已安装java23,安装Kettle 出现报错:尝试启动 Java 虚拟机(JVM)时失败解决方法
java·kettle
梭七y18 分钟前
【力扣hot100题】(033)合并K个升序链表
算法·leetcode·链表
月亮被咬碎成星星23 分钟前
LeetCode[383]赎金信
算法·leetcode
利明的博客27 分钟前
mediacodec服务启动时加载media_codecs.xml
android·xml·java
葵野寺42 分钟前
【多线程】线程池
java·开发语言·java-ee·web app
十六ᵛᵃᵉ42 分钟前
day6_FlinkSQL实战
java·redis·ajax
嘉友44 分钟前
Redis zset数据结构以及时间复杂度总结(源码)
数据结构·数据库·redis·后端
无难事者若执1 小时前
新手村:逻辑回归-理解03:逻辑回归中的最大似然函数
算法·机器学习·逻辑回归