pytorch打印模型结构和参数

两种方式

当我们使用pytorch进行模型训练或测试时,有时候希望能知道模型每一层分别是什么,具有怎样的参数。此时我们可以将模型打印出来,输出每一层的名字、类型、参数等。

常用的命令行打印模型结构的方法有两种:

  • 一是直接print
  • 二是使用torchsummary库的summary
    但是二者在输出上有着一些区别。首先说结论:
    print输出结果是每一层的名字、类别、以及构造时的参数,例如对于卷积层,还包括用户定义的stride、bias等;而torch summary则会打印类别、深度、输出Tensor的形状、参数数量等。
    这也是很重要的一点,print打印的每一层顺序,是模型init函数中定义的顺序,而torchsummary则是模型执行起来输入张量真正计算的顺序。

torch summary 安装:

示例

print:

summary:

打印每一层的输入输出结构

python 复制代码
import torch
from torch import nn
#from d2l import torch as d2l

net1D = nn.Sequential(nn.Conv1d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),
                    nn.AvgPool1d(kernel_size=2,stride=2),
                    nn.Conv1d(6,16,kernel_size=5),nn.Sigmoid(),
                    nn.AvgPool1d(kernel_size=2,stride=2),
                    nn.Flatten(),
                    nn.Linear(16*5,120),nn.Sigmoid(), # 这边要根据上面的输出重新计算拉平后的大小
                    nn.Linear(120,84),nn.Sigmoid(),
                    nn.Linear(84,2)
                    )
Y=torch.rand(size=(1,1,28),dtype=torch.float32)  # 批次大小,通道数,长度
for layer in net1D:
    Y=layer(Y)
    print(layer.__class__.__name__, 'output shape: \t',Y.shape)
out 复制代码
Conv1d output shape:      torch.Size([1, 6, 28])
Sigmoid output shape:      torch.Size([1, 6, 28])
AvgPool1d output shape:      torch.Size([1, 6, 14])
Conv1d output shape:      torch.Size([1, 16, 10])
Sigmoid output shape:      torch.Size([1, 16, 10])
AvgPool1d output shape:      torch.Size([1, 16, 5])
Flatten output shape:      torch.Size([1, 80])
Linear output shape:      torch.Size([1, 120])
Sigmoid output shape:      torch.Size([1, 120])
Linear output shape:      torch.Size([1, 84])
Sigmoid output shape:      torch.Size([1, 84])
Linear output shape:      torch.Size([1, 2])
相关推荐
Allen_LVyingbo3 分钟前
Python使用Medical Information Dataset实战2025.07版(下)
python·信息可视化·健康医疗
亚马逊云开发者9 分钟前
GenDev 智能开发:Amazon Q Developer CLI 赋能Amazon Code Family实现代码审核
人工智能
weixin_3776348417 分钟前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
Francek Chen25 分钟前
【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能·pytorch·深度学习·计算机视觉·kaggle·imagenet dogs
dxnb2228 分钟前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
波诺波39 分钟前
通用装饰器示例
开发语言·python
渡我白衣1 小时前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
飞哥数智坊1 小时前
Claude Skills 实测体验:不用翻墙,GLM-4.6 也能玩转
人工智能·claude·chatglm (智谱)
程序员爱钓鱼1 小时前
Python编程实战 · 基础入门篇 | 变量与命名规范
后端·python
007php0071 小时前
猿辅导Java面试真实经历与深度总结(二)
java·开发语言·python·计算机网络·面试·职场和发展·golang