ELK + kafka 日志方案

概述

本文介绍使用ELK(elasticsearch、logstash、kibana) + kafka来搭建一个日志系统。主要演示使用spring aop进行日志收集,然后通过kafka将日志发送给logstash,logstash再将日志写入elasticsearch,这样elasticsearch就有了日志数据了,最后,则使用kibana将存放在elasticsearch中的日志数据显示出来,并且可以做实时的数据图表分析等等。

详细

本文介绍使用ELK(elasticsearch、logstash、kibana) + kafka来搭建一个日志系统。主要演示使用spring aop进行日志收集,然后通过kafka将日志发送给logstash,logstash再将日志写入elasticsearch,这样elasticsearch就有了日志数据了,最后,则使用kibana将存放在elasticsearch中的日志数据显示出来,并且可以做实时的数据图表分析等等。

为什么用ELK
以前不用ELK的做法

最开始我些项目的时候,都习惯用log4j来把日志写到log文件中,后来项目有了高可用的要求,我们就进行了分布式部署web,这样我们还是用log4j这样的方式来记录log的话,那么就有N台机子的N个log目录,这个时候查找log起来非常麻烦,不知道问题用户出错log是写在哪一台服务器上的,后来,想到一个办法,干脆把log直接写到数据库中去,这样做,虽然解决了查找异常信息便利性的问题了,但存在两个缺陷:

1,log记录好多,表不够用啊,又得分库分表了,

2,连接db,如果是数据库异常,那边log就丢失了,那么为了解决log丢失的问题,那么还得先将log写在本地,然后等db连通了后,再将log同步到db,这样的处理办法,感觉是越搞越复杂。

现在ELK的做法

好在现在有了ELK这样的方案,可以解决以上存在的烦恼,首先是,使用elasticsearch来存储日志信息,对一般系统来说可以理解为可以存储无限条数据,因为elasticsearch有良好的扩展性,然后是有一个logstash,可以把理解为数据接口,为elasticsearch对接外面过来的log数据,它对接的渠道,有kafka,有log文件,有redis等等,足够兼容N多log形式,最后还有一个部分就是kibana,它主要用来做数据展现,log那么多数据都存放在elasticsearch中,我们得看看log是什么样子的吧,这个kibana就是为了让我们看log数据的,但还有一个更重要的功能是,可以编辑N种图表形式,什么柱状图,折线图等等,来对log数据进行直观的展现。

ELK职能分工

  • logstash做日志对接,接受应用系统的log,然后将其写入到elasticsearch中,logstash可以支持N种log渠道,kafka渠道写进来的、和log目录对接的方式、也可以对reids中的log数据进行监控读取,等等。

  • elasticsearch存储日志数据,方便的扩展特效,可以存储足够多的日志数据。

  • kibana则是对存放在elasticsearch中的log数据进行:数据展现、报表展现,并且是实时的。

怎样用ELK

首先说明一点,使用ELK是不需要开发的,只需要搭建环境使用即可。搭建环境,可以理解为,下载XX软件,然后配置下XX端口啊,XX地址啊,XX日志转发规则啊等等,当配置完毕后,然后点击XX bat文件,然后启动。

Logstash配置

可以配置接入N多种log渠道,现状我配置的只是接入kafka渠道。

配置文件在\logstash-2.3.4\config目录下

要配置的是如下两个参数体:

  • input:数据来源。

  • output:数据存储到哪里。

    input {
    kafka {
    zk_connect => "127.0.0.1:2181"
    topic_id => "mylog_topic"
    }
    }
    filter {
    #Only matched data are send to output.
    }
    output {
    #stdout{}
    # For detail config for elasticsearch as output,
    # See: https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html
    elasticsearch {
    action => "index" #The operation on ES
    hosts => "127.0.0.1:9200" #ElasticSearch host, can be array.
    index => "my_logs" #The index to write data to.
    }
    }

Elasticsearch配置

配置文件在\elasticsearch-2.3.3\config目录下的elasticsearch.yml,可以配置允许访问的IP地址,端口等,但我这里是采取默认配置。

Kibana配置

配置文件在\kibana-4.5.4-windows\config目录下的kibana.yml,可以配置允许访问的IP地址,端口等,但我这里是采取默认配置。

这里有一个需要注意的配置,就是指定访问elasticsearch的地址。我这里是同一台机子做测试,所以也是采取默认值了。

# The Elasticsearch instance to use for all your queries.
# elasticsearch.url: "http://localhost:9200"

关于ELK的配置大致上,就这样就可以了,当然其实还有N多配置项可供配置的,具体可以google。这里就不展开说了。

具体的配置请下载运行环境,里面有具体的配置。

和spring aop日志对接

elk环境搭建完毕后,需要在应用系统做日志的aop实现。

部分spring配置
<aop:aspectj-autoproxy />
<aop:aspectj-autoproxy proxy-target-class="true" />
     
<!-- 扫描web包,应用Spring的注解 -->
<context:component-scan  base-package="com.demodashi">
    <context:include-filter type="annotation" expression="org.springframework.stereotype.Controller" />
    <context:exclude-filter type="annotation" expression="javax.inject.Named" />
    <context:exclude-filter type="annotation" expression="javax.inject.Inject" />
</context:component-scan>
部分java代码
package com.demodashi.aop.annotation;
import java.lang.annotation.*;    
     
/**  
 *自定义注解 拦截service  
 */    
     
@Target({ElementType.PARAMETER, ElementType.METHOD})    
@Retention(RetentionPolicy.RUNTIME)    
@Documented    
public  @interface ServiceLogAnnotation {    
     
    String description()  default "";    
}


package com.demodashi.aop.annotation;
import java.lang.annotation.*;    
     
/**  
 *自定义注解 拦截Controller  
 */    
     
@Target({ElementType.PARAMETER, ElementType.METHOD})    
@Retention(RetentionPolicy.RUNTIME)    
@Documented    
public  @interface ControllerLogAnnotation {    
     
    String description()  default "";    
}

代码截图

日志和kafka、和logstash、elasticsearch、kibana直接的关系

ELK,kafka、aop之间的关系

1、aop对日志进行收集,然后通过kafka发送出去,发送的时候,指定了topic(在spring配置文件中配置为 topic="mylog_topic")

2、logstash指定接手topic为 mylog_topic的kafka消息(在config目录下的配置文件中,有一个input的配置)

3、然后logstash还定义了将接收到的kafka消息,写入到索引为my_logs的库中(output中有定义)

4、再在kibana配置中,指定要连接那个elasticsearch(kibana.yml中有配置,默认为本机)

5、最后是访问kibana,在kibana的控制台中,设置要访问elasticsearch中的哪个index。

部署ELK + kafka环境

我本机的环境是jdk8.0,我记得测试的过程中,elasticsearch对jdk有特别的要求,必须是jdk7或者以上。

下载运行环境附件,并解压后,看到如下:

这些运行环境,在每个软件里面,都有具体的启动说明,如kafka的目录下,这样:

按照启动说明的命令来执行,即可启动。

这里需要说明一点,最先启动,应该是zookeeper,然后才是其他的,其他几个没有严格区分启动顺序。

直接在window下面,同一台机子启动即可。除了kibana-4.5.4-windows外,其他几个也是可以在linux下运行的。

本文由"未央天际人家账号"发布,2023年11月2日

相关推荐
miss writer22 分钟前
Redis分布式锁释放锁是否必须用lua脚本?
redis·分布式·lua
m0_7482548829 分钟前
DataX3.0+DataX-Web部署分布式可视化ETL系统
前端·分布式·etl
字节程序员2 小时前
Jmeter分布式压力测试
分布式·jmeter·压力测试
darkdragonking2 小时前
OpenEuler 22.03 不依赖zookeeper安装 kafka 3.3.2集群
kafka
ProtonBase2 小时前
如何从 0 到 1 ,打造全新一代分布式数据架构
java·网络·数据库·数据仓库·分布式·云原生·架构
时时刻刻看着自己的心2 小时前
clickhouse分布式表插入数据不用带ON CLUSTER
分布式·clickhouse
Data跳动11 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
Java程序之猿12 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰13 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn14 小时前
Hadoop yarn安装
大数据·hadoop·分布式