OpenCV官方教程中文版 —— Hough 圆环变换

OpenCV官方教程中文版 ------ Hough 圆环变换

  • 前言
  • [Hough 圆环变换](#Hough 圆环变换)

前言

目标

学习使用霍夫变换在图像中找圆形(环)

学习函数:cv2.HoughCircles()

Hough 圆环变换


opencv_logo.png

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv_logo.png', 0)
img = cv2.medianBlur(img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20,
                           param1=50, param2=40, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
    # draw the outer circle
    cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)
    # draw the center of the circle
    cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)

plt.figure()
plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(122)
plt.imshow(cimg, cmap='gray')
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.show()
# Python: cv2.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)
# Parameters:
# image -- 8-bit, single-channel, grayscale input image.
# 返回结果为 Output vector of found circles. Each vector is encoded as a
# 3-element floating-point vector (x, y, radius) .
# circle_storage -- In C function this is a memory storage that will contain
# the output sequence of found circles.
# method -- Detection method to use. Currently, the only implemented method is
# CV_HOUGH_GRADIENT , which is basically 21HT , described in [Yuen90].
# dp -- Inverse ratio of the accumulator resolution to the image resolution.
# For example, if dp=1 , the accumulator has the same resolution as the input image.
# If dp=2 , the accumulator has half as big width and height.
# minDist -- Minimum distance between the centers of the detected circles.
# If the parameter is too small, multiple neighbor circles may be falsely
# detected in addition to a true one. If it is too large, some circles may be missed.
# param1 -- First method-specific parameter. In case of CV_HOUGH_GRADIENT ,
# it is the higher threshold of the two passed to the Canny() edge detector
# (the lower one is twice smaller).
# param2 -- Second method-specific parameter. In case of CV_HOUGH_GRADIENT ,
# it is the accumulator threshold for the circle centers at the detection stage.
# The smaller it is, the more false circles may be detected. Circles,
# corresponding to the larger accumulator values, will be returned first.
# minRadius -- Minimum circle radius.
# maxRadius -- Maximum circle radius.
相关推荐
sali-tec17 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗17 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记17 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技17 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风17 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao17 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
九河云18 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
IT空门:门主19 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台19 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站19 小时前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能