OpenCV官方教程中文版 —— Hough 圆环变换

OpenCV官方教程中文版 ------ Hough 圆环变换

  • 前言
  • [Hough 圆环变换](#Hough 圆环变换)

前言

目标

学习使用霍夫变换在图像中找圆形(环)

学习函数:cv2.HoughCircles()

Hough 圆环变换


opencv_logo.png

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv_logo.png', 0)
img = cv2.medianBlur(img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20,
                           param1=50, param2=40, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
    # draw the outer circle
    cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)
    # draw the center of the circle
    cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)

plt.figure()
plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(122)
plt.imshow(cimg, cmap='gray')
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.show()
# Python: cv2.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)
# Parameters:
# image -- 8-bit, single-channel, grayscale input image.
# 返回结果为 Output vector of found circles. Each vector is encoded as a
# 3-element floating-point vector (x, y, radius) .
# circle_storage -- In C function this is a memory storage that will contain
# the output sequence of found circles.
# method -- Detection method to use. Currently, the only implemented method is
# CV_HOUGH_GRADIENT , which is basically 21HT , described in [Yuen90].
# dp -- Inverse ratio of the accumulator resolution to the image resolution.
# For example, if dp=1 , the accumulator has the same resolution as the input image.
# If dp=2 , the accumulator has half as big width and height.
# minDist -- Minimum distance between the centers of the detected circles.
# If the parameter is too small, multiple neighbor circles may be falsely
# detected in addition to a true one. If it is too large, some circles may be missed.
# param1 -- First method-specific parameter. In case of CV_HOUGH_GRADIENT ,
# it is the higher threshold of the two passed to the Canny() edge detector
# (the lower one is twice smaller).
# param2 -- Second method-specific parameter. In case of CV_HOUGH_GRADIENT ,
# it is the accumulator threshold for the circle centers at the detection stage.
# The smaller it is, the more false circles may be detected. Circles,
# corresponding to the larger accumulator values, will be returned first.
# minRadius -- Minimum circle radius.
# maxRadius -- Maximum circle radius.
相关推荐
新缸中之脑1 小时前
30个最好的3D相关AI代理技能
人工智能·3d
Pyeako1 小时前
opencv计算机视觉--LBPH&EigenFace&FisherFace人脸识别
人工智能·python·opencv·计算机视觉·lbph·eigenface·fisherface
工程师老罗1 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
猫头虎1 小时前
手动部署开源OpenClaw汉化中文版过程中常见问题排查手册
人工智能·langchain·开源·github·aigc·agi·openclaw
多恩Stone1 小时前
【3D AICG 系列-9】Trellis2 推理流程图超详细介绍
人工智能·python·算法·3d·aigc·流程图
整得咔咔响1 小时前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
2501_946961471 小时前
极简大气创业融资 PPT 模板,适合路演、项目宣讲
人工智能·排序算法
得一录1 小时前
AI 语音助手:如何用大模型优化智能语音交互?
人工智能
玄同7651 小时前
Python 自动发送邮件实战:用 QQ/163 邮箱发送大模型生成的内容
开发语言·人工智能·python·深度学习·机器学习·邮件·邮箱
逸俊晨晖1 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia