Bytedance揭秘OpenAI大模型: GPT-3到GPT-4进化路径

文章目录

GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond

探秘GPT-3到GPT-4进化之路

1、SFT:早期GPT进化的推动者

SFT只在较弱的基础模型上管用,用在更强的模型上收效甚微。类似现象在开源模型身上也可见(这个评测还测了Llama1和2、PaLM2-L、Claude 2等模型):

在初代Llama-65B之上,SFT成功提升了它在MMLU基准上的性能,但是,所有使用了SFT改进的Llama2-70B在Open LLM Leaderboard榜单上却只表现出微小的进步。

总结:在GPT3阶段,SFT技术对模型的进化起到了关键作用。

2、RLHF和SFT:编码能力提升的功臣

顺着GPT3.5系列接着看,从text-davinci-002开始,OpenAI开始引入新技术基于PPO算法的RLHF,得到text-davinci-003。

此时,它在大部分基准上的表现和前代模型持平或略变差,说明作用不是特别明显(在开源模型身上也是如此)。

但有一个除外:编码任务,最高足足增加了近30分。

LLM仍可以通过SFT和RLHF,不断将内在能力(但需要多次尝试)转化成一次性解决问题的能力,不断逼近LLM的能力上限。

3、代码加入预训练,对推理帮助最大

在GPT4进化之路上,还出现了2个特别的模型:

code-cushman-001 (Codex-12B)code-davinci-002

前者是OpenAI初次尝试使用代码数据训练模型,尽管它的规模较小,但也取得了不错的代码能力。后者是GPT3.5的基座模型,它是在GPT3的基础上使用RLHF+代码训练的结果,也就是文本和代码混合预训练。

可以看到,它大幅超越GPT-3(不止是编码能力)、在一些推理任务上(如BBH)表现甚至可以超过后面的gpt-3.5-turbo-0613。

4、"跷跷板"现象

通过比较2023年3月和2023年6月的OpenAI API模型,我们确实可以发现这一现象:

与gpt-3.5-turbo-0301相比,升级后的gpt-3.5-turbo-0613在HumanEval上表现出色(53.9 -> 80.0),但在MATH上却大幅下降(32.0 -> 15.0)。

gpt-4-0613在DROP上的表现优于gpt-4-0314 (78.7 -> 87.2) ,但在MGSM上也出现了直线下降(82.2 -> 68.7) 。

作者认为:

"跷跷板现象"可能成为LLM通往AGI之路的绊脚石,因为AGI强调"通用智能",要在所有task上都有优异的性能,要求模型不能"偏科"。在此,他们也呼吁社区重视这个问题,共同推进大模型平衡发展的研究。

论文地址

https://arxiv.org/abs/2309.16583

项目链接

https://github.com/GPT-Fathom/GPT-Fathom

Reference

https://mp.weixin.qq.com/s/-AWkDzAzoyQNmgYXuC6B4w

相关推荐
Jamence39 分钟前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon42 分钟前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习
凡人的AI工具箱1 小时前
每天40分玩转Django:实操多语言博客
人工智能·后端·python·django·sqlite
Jackilina_Stone1 小时前
【自动驾驶】3 激光雷达③
人工智能·自动驾驶
HUIBUR科技1 小时前
从虚拟到现实:AI与AR/VR技术如何改变体验经济?
人工智能·ar·vr
QQ_7781329741 小时前
基于云计算的资源管理系统
人工智能·云计算
伊一大数据&人工智能学习日志1 小时前
OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道
人工智能·opencv·计算机视觉
soulteary1 小时前
使用 AI 辅助开发一个开源 IP 信息查询工具:一
人工智能·tcp/ip·开源·ip 查询
爱补鱼的猫猫1 小时前
2、Bert论文笔记
论文阅读·人工智能·bert
起名字什么的好难2 小时前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda