NLP之Bert介绍和简单示例

文章目录

  • [1. Bert 介绍](#1. Bert 介绍)
  • [2. 代码示例](#2. 代码示例)
    • [2.1 代码流程](#2.1 代码流程)

1. Bert 介绍






2. 代码示例

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

python 复制代码
tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    python 复制代码
    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

目的:

这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

相关推荐
一瞬祈望2 分钟前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
一马平川的大草原6 分钟前
AI Agent常见问题和核心术语
人工智能·学习笔记·agent
亚马逊云开发者19 分钟前
零售数字化转型新引擎:基于 Amazon Bedrock 和 Strands SDK 的 AI Agent 实践指南
人工智能
明月照山海-34 分钟前
机器学习周报二十六
人工智能·机器学习·计算机视觉
乱世刀疤39 分钟前
Dify修改默认80端口的方法
人工智能·dify
杨小扩42 分钟前
提升开发效率的在线工具箱实践:集成AI能力的多功能工具平台体验
人工智能
Master_oid1 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
永恒-龙啸1 小时前
图像增强与滤波
图像处理·人工智能·计算机视觉
嗷嗷哦润橘_1 小时前
AI Agent学习:MetaGPT项目之RAG
人工智能·python·学习·算法·deepseek
Buxxxxxx1 小时前
DAY 39 GPU训练及类的call方法
人工智能