NLP之Bert介绍和简单示例

文章目录

  • [1. Bert 介绍](#1. Bert 介绍)
  • [2. 代码示例](#2. 代码示例)
    • [2.1 代码流程](#2.1 代码流程)

1. Bert 介绍






2. 代码示例

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

python 复制代码
tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    python 复制代码
    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

目的:

这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

相关推荐
QxQ么么3 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐3 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识5 小时前
AI Agent
人工智能
猫头虎5 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子5 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.5 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术5 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java5 小时前
机器学习初级
人工智能·机器学习
陈奕昆5 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
努力改掉拖延症的小白5 小时前
Intel笔记本也能部署大模型(利用Ultra系列gpu通过优化版ollama实现)
人工智能·ai·语言模型·大模型