NLP之Bert介绍和简单示例

文章目录

  • [1. Bert 介绍](#1. Bert 介绍)
  • [2. 代码示例](#2. 代码示例)
    • [2.1 代码流程](#2.1 代码流程)

1. Bert 介绍






2. 代码示例

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

python 复制代码
tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    python 复制代码
    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

目的:

这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

相关推荐
互联网志3 分钟前
交通运输行业作为人工智能落地领域,是一个庞大的人工智能应用场景
人工智能·百度
小程故事多_803 分钟前
Agent Skills深度解析,让智能体从“会连接”到“会做事”的核心引擎
数据库·人工智能·aigc
啊巴矲17 分钟前
小白从零开始勇闯人工智能:深度学习初级篇(初识深度学习及环境的配置与安装)
人工智能·深度学习
白白要坚持38 分钟前
本地部署jina-bert
人工智能·bert·jina
救救孩子把42 分钟前
51-机器学习与大模型开发数学教程-4-13 EM算法与混合模型
人工智能·算法·机器学习
Fuly10241 小时前
多模态大模型应用技术栈
人工智能·深度学习·计算机视觉
Brduino脑机接口技术答疑1 小时前
TDCA 算法在 SSVEP 场景中的训练必要性
人工智能·算法·机器学习·脑机接口
悟道心1 小时前
1.自然语言处理NLP - 入门
人工智能·自然语言处理
雪花desu1 小时前
深度解析RAG(检索增强生成)技术
人工智能·深度学习·语言模型·chatgpt·langchain
咚咚王者2 小时前
人工智能之数学基础 离散数学:第四章 离散概率
人工智能