NLP之Bert介绍和简单示例

文章目录

  • [1. Bert 介绍](#1. Bert 介绍)
  • [2. 代码示例](#2. 代码示例)
    • [2.1 代码流程](#2.1 代码流程)

1. Bert 介绍






2. 代码示例

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

python 复制代码
tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    python 复制代码
    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

目的:

这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

相关推荐
nihao5611 分钟前
Mumu 模拟器配置host代理
人工智能
福客AI智能客服9 分钟前
专业适配破局:AI客服软件与电商智能客服重塑日用品服务生态
大数据·人工智能
GIS数据转换器12 分钟前
基于GIS与AI的社区‑商圈融合可视化平台
人工智能·信息可视化·无人机·智慧城市·制造
摩西蒙17 分钟前
业务监控和常用产品
java·大数据·人工智能
乐迪信息18 分钟前
乐迪信息解决港口船型识别难题!AI算法盒子检测船舶类型
人工智能·算法·智能电视
HyperAI超神经21 分钟前
具身智能资源汇总:机器人学习数据集,在线体验世界建模模型,英伟达/字节/小米等最新研究论文
人工智能·深度学习·学习·机器学习·机器人·ai编程·图形生成
地球没有花21 分钟前
调整warmup的batch优化tensorflow serving P99耗时毛刺
人工智能·python·tensorflow
道可云40 分钟前
道可云AI元宇宙平台入选2025年度视听系统典型案例
人工智能
AI-小柒1 小时前
从零入门大语言模型(LLM):系统学习路线与实践指南
大数据·开发语言·人工智能·学习·信息可视化·语言模型·自然语言处理
才聚PMP1 小时前
NPI项目如何用控制计划(CP)锁死 “量产一致性”?
人工智能