NLP之Bert介绍和简单示例

文章目录

  • [1. Bert 介绍](#1. Bert 介绍)
  • [2. 代码示例](#2. 代码示例)
    • [2.1 代码流程](#2.1 代码流程)

1. Bert 介绍






2. 代码示例

python 复制代码
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

python 复制代码
tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    python 复制代码
    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

目的:

这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

相关推荐
熊猫钓鱼>_>8 分钟前
AI 加 CloudBase 帮我从零快速打造儿童英语故事学习乐园
ide·人工智能·ai·mcp·codebuddy·cloudbase·ai toolkit
QYZL_AIGC12 分钟前
全域众链AI赋能实体,开启数字化转型新生态
大数据·人工智能
SCKJAI14 分钟前
推出高效能机器人边缘人工智能(AI)平台 ARC6N0 T5X
大数据·人工智能
新加坡内哥谈技术18 分钟前
软件工程未来两年
人工智能
_爱明18 分钟前
评估回归模型的指标与理解
人工智能·数据挖掘·回归
小途软件22 分钟前
基于深度学习的驾驶人情绪识别
java·人工智能·pytorch·python·深度学习·语言模型
向量引擎23 分钟前
[架构师级] 压榨GPT-5.2与Sora 2的极限性能:从单体调用到高并发多模态Agent集群的演进之路(附全套Python源码与性能调优方案)
开发语言·人工智能·python·gpt·ai·ai写作·api调用
北芝科技44 分钟前
AI在教育中的五大应用场景,助力教学与学习全面智能化解决方案
人工智能·学习
金融小师妹1 小时前
机器学习捕捉地缘溢价:黄金突破一周高位,AI预测模型验证趋势强度
大数据·人工智能·深度学习
byzh_rc1 小时前
[机器学习-从入门到入土] 拓展-范数
人工智能·机器学习