pytorch中的矩阵乘法

1. 运算符介绍

关于@运算,*运算,torch.mul(), torch.mm(), torch.mv(), tensor.t()

@ 和 *代表矩阵的两种相乘方式:

@表示常规的数学上定义的矩阵相乘;
*表示两个矩阵对应位置处的两个元素相乘。

1.1 矩阵点乘

*和torch.mul()等同:表示相同shape矩阵点乘,即对应位置相乘,得到矩阵有相同的shape。

一,对应点相乘,x.mul(y) ,即点乘操作,点乘不求和操作,又可以叫作Hadamard product;点乘再求和,即为卷积

python 复制代码
>>> a = torch.Tensor([[1,2], [3,4], [5, 6]])
>>> a
tensor([[1., 2.],
        [3., 4.],
        [5., 6.]])
>>> a.mul(a)
tensor([[ 1.,  4.],
        [ 9., 16.],
        [25., 36.]])
 
>>> a * a
tensor([[ 1.,  4.],
        [ 9., 16.],
        [25., 36.]])

1.2 矩阵乘法

@和torch.mm(a, b)等同:正常矩阵相乘,要求a的列数与b的行数相同。

torch.mv(X, w0):是矩阵和向量相乘.第一个参数是矩阵,第二个参数只能是一维向量,等价于X乘以w0的转置

二,矩阵相乘,x.mm(y)或者x.matmul(b), 矩阵大小需满足: (i, n)x(n, j)

python 复制代码
>>> a
tensor([[1., 2.],
        [3., 4.],
        [5., 6.]])
>>> b = a.t()  # 转置
>>> b
tensor([[1., 3., 5.],
        [2., 4., 6.]])
 
>>> a.mm(b)
tensor([[ 5., 11., 17.],
        [11., 25., 39.],
        [17., 39., 61.]])
 
>>> a.matmul(b)
tensor([[ 5., 11., 17.],
        [11., 25., 39.],
        [17., 39., 61.]])

多维矩阵相乘

3维矩阵相乘

python 复制代码
>>> a = torch.randn(64, 128, 56)
>>> b = torch.randn(64, 56, 72)
 
>>> a.shape
torch.Size([64, 128, 56])
>>> b.shape
torch.Size([64, 56, 72])
 
>>> d = a.matmul(b)  # 多出的一维作为batch提出来,其他部分做矩阵乘法。
 
>>> d.shape
torch.Size([64, 128, 72])  
 
# a.mm(b) 这个不行会报错:untimeError: self must be a matrix

4维矩阵相乘

python 复制代码
>>> a = torch.randn(64, 3, 128, 56)
>>> b = torch.randn(64, 3, 56, 72)
 
>>> d = a.matmul(b)  # 多出的维数作为batch提出来,其他部分做矩阵乘法。
 
>>> d.shape
torch.Size([64, 3, 128, 72])  
 
# a.mm(b) 这个不行会报错:untimeError: self must be a matrix

1.3 向量乘积

x.dot(y): 向量乘积,x,y均为一维向量。

Y.t():矩阵Y的转置。

ref

  1. https://blog.csdn.net/jizhidexiaoming/article/details/82502724
  2. https://blog.csdn.net/beauthy/article/details/121103704
相关推荐
whaosoft-1431 分钟前
51c~Pytorch~合集6
人工智能
后端小张3 分钟前
[AI 学习日记] 深入解析MCP —— 从基础配置到高级应用指南
人工智能·python·ai·开源协议·mcp·智能化转型·通用协议
天青色等烟雨..6 分钟前
AI+Python驱动的无人机生态三维建模与碳储/生物量/LULC估算全流程实战技术
人工智能·python·无人机
渡我白衣10 分钟前
深度学习进阶(七)——智能体的进化:从 LLM 到 AutoGPT 与 OpenDevin
人工智能·深度学习
乌恩大侠27 分钟前
【USRP】AI-RAN Sionna 5G NR 开发者套件
人工智能·5g
孤狼灬笑29 分钟前
机器学习十大经典算法解析与对比
人工智能·算法·机器学习
聚梦小课堂30 分钟前
ComfyUI Blog: ImagenWorld 发布:面向图像生成与编辑的真实世界基准测试数据集
人工智能·深度学习·图像生成·benchmark·imagenworld
星际棋手35 分钟前
【AI】一文说清楚神经网络、机器学习、专家系统
人工智能·神经网络·机器学习
测试开发技术40 分钟前
什么样的 prompt 是好的 prompt?
人工智能·ai·大模型·prompt
M17迪Pq:00071 小时前
学会“做减法”之--用户体验优化
人工智能·贪心算法·产品运营·动态规划·软件工程