FuSAGNet Evaluation Analysis

FuSAGNet Evaluation Analysis

  • [1. Procedure](#1. Procedure)
    • [1.1 Calculating test_score_forecasting](#1.1 Calculating test_score_forecasting)
    • [1.2 Calculating test_score_reconstruction](#1.2 Calculating test_score_reconstruction)
    • [1.3 IMPORTANT: Calculating test_score_whm(Weighted Harmonic Mean)](#1.3 IMPORTANT: Calculating test_score_whm(Weighted Harmonic Mean))
    • [1.4 Calculating F1, Precision and Recall](#1.4 Calculating F1, Precision and Recall)
      • [Major function name:](#Major function name:)
      • Procedure:
      • [1. Calculating the max number in every single timestamp among 51 features](#1. Calculating the max number in every single timestamp among 51 features)
      • [2. Calculating threshold](#2. Calculating threshold)
        • [Fistly, ranking total_topk_err_scores which is a array from last step.](#Fistly, ranking total_topk_err_scores which is a array from last step.)
        • [Giving every item in total_top_err_scores a order](#Giving every item in total_top_err_scores a order)
        • [Generating a list ranging from 0 to 400 and step is 0.0025](#Generating a list ranging from 0 to 400 and step is 0.0025)
        • [Getting a bool list according this code](#Getting a bool list according this code)
        • [Try every threshold and get the best one](#Try every threshold and get the best one)
        • [Finally, we can get a f1_score list](#Finally, we can get a f1_score list)
  • [2. Summary](#2. Summary)

1. Procedure

1.1 Calculating test_score_forecasting

Function Name:

  • get_full_err_scores()
Params Description
test_result Predicted y_hat by best_model on test dataset
val_result Predicted y_hat by best_model on valid dataset

Purpose:

Getting smoothed_score for every feature, respectively on test_result and val_result

  • get_err_scores
Params Description
err_scores (test_delta - n_err_mid) / (np.abs(n_err_iqr) + epsilon)
test_delta set before testing default is 0.5
n_err_mid median from np.substruct(pred_data, ground_truth)
n_err_iqr quartile about np.substruct(pred_data, ground_truth)
err_scores a raw in smoothed_scores

Return:

  • all_socres(calculating from get_full_err_score and concat together) and all_norms

1.2 Calculating test_score_reconstruction

Function Name: get_full_err_scores()

Same sas above

1.3 IMPORTANT: Calculating test_score_whm(Weighted Harmonic Mean)

The previous two stpes are prepared for calculating whm

具体来说,Weighted Harmonic Mean 函数通过给定的输入值 x1 和 x2,以及它们的权重 w1 和 w2,计算这两个值的加权调和平均值。这可以用于根据权重对不同数值进行加权平均,以反映它们在总平均值中的相对重要性。

函数中的 epsilon 用于确保分母不会为零,从而避免出现除法错误。这种方式可以增加数学计算的稳定性,特别是在输入值或权重值中存在较小的数值时。

这个函数对于某些数学模型、统计分析或工程应用中可能会有用,特别是当需要考虑不同变量之间的权重关系时。 Weighted Harmonic Mean 是一种通用的统计工具,可用于多种情况下的加权平均计算。

Calculating whm of every feature and finally conacting them to one matrix.

Finally we get test_score_whm which will be used in next step

1.4 Calculating F1, Precision and Recall

Major function name:

get_best_performance_data()

Procedure:

1. Calculating the max number in every single timestamp among 51 features

NOTICE: If topk==1, below are calculating the max number in every column

py 复制代码
total_features = total_err_scores.shape[0]
    topk_indices = np.argpartition(
        total_err_scores, range(total_features - topk - 1, total_features), axis=0
    )[-topk:]  # 获取每一个步长中51个特征最大的值
    total_topk_err_scores = np.sum(
        np.take_along_axis(total_err_scores, topk_indices, axis=0), axis=0
    )  # 到这里为止都是多此一举,完全可以直接提取total_err_scores每一列最大的值

2. Calculating threshold

py 复制代码
final_topk_fmeas, thresholds = eval_scores(
    total_topk_err_scores, gt_labels, 400, return_threshold=True
)
Fistly, ranking total_topk_err_scores which is a array from last step.
Giving every item in total_top_err_scores a order
Generating a list ranging from 0 to 400 and step is 0.0025
Getting a bool list according this code
py 复制代码
cur_pred = scores_sorted > th_vals[i] * len(scores)
Try every threshold and get the best one
py 复制代码
for i in range(th_steps):
    cur_pred = scores_sorted > th_vals[i] * len(scores)
    fmeas[i] = f1_score(true_scores, cur_pred)
    score_index = scores_sorted.tolist().index(int(th_vals[i] * len(scores) + 1))
    thresholds[i] = scores[score_index]
Finally, we can get a f1_score list

2. Summary

Honestly, the most important step is calculating that WHM list. After that we just need get the biggest one in every column of that WHM matrix. Fianlly, setting a threshold rage and trying every one.

相关推荐
动能小子ohhh9 分钟前
AI智能体(Agent)大模型入门【6】--编写fasteAPI后端请求接口实现页面聊天
人工智能·python·深度学习·ai编程
拉姆哥的小屋1 小时前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
盼小辉丶1 小时前
TensorFlow深度学习实战(39)——机器学习实践指南
深度学习·机器学习·tensorflow
蒋星熠1 小时前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
qq_340474021 小时前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
MYX_3092 小时前
第三章 神经网络
人工智能·深度学习·神经网络
可触的未来,发芽的智生6 小时前
触摸未来2025.10.04:当神经网络拥有了内在记忆……
人工智能·python·神经网络·算法·架构
PKNLP6 小时前
深度学习之神经网络2(Neural Network)
人工智能·深度学习·神经网络
xiaohanbao097 小时前
理解神经网络流程
python·神经网络
格林威8 小时前
机器视觉的工业镜头有哪些?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头