论文阅读——What Can Human Sketches Do for Object Detection?(cvpr2023)

论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Chowdhury_What_Can_Human_Sketches_Do_for_Object_Detection_CVPR_2023_paper.pdf

代码:What Can Human Sketches Do for Object Detection? (pinakinathc.me)

一、

Baseline SBIR Framework:给一组图片:轮廓和图片,学习到对应的两个特征,然后使用余弦距离计算triplet loss。

本文使用hard-triplet loss,再加上一个分类损失

二、

使用RPN或者selective search生成框和对应的特征,输入到分类头检测头得到两个分数。通过这两个来判断图片中是否出现某个类别。分类头分数分别判断每个区域属于某个类别的概率,检测头分数判断这个patch对属于被分到的这个类别的贡献度。

labels:

,

三、

下面是微调框:

因为没有坐标标注,所以使用了一个迭代微调分类器对每个ROI预测一个精细的类别分数,标签从第k-1步迭代获得:

1、计算每个类别分数最高的patch

2、和这个patch重叠度高的(iou>0.5)patch都是一个类别

3、如果某个区域和任何一个分数高的patch重合度都不高,就是背景。

4、如果某个类别没出现在图片中,也是0

损失函数:

四、

然后检测一般是预先固定多少类别,作者克服了这个限制

每个头原本预测分数,改为计算嵌入向量

用预训练的Fs编码patch得到

计算分数:

多加了一个来自原始图片的监督Fp,

最终损失为:

五、

泛化到开放词汇检测:

轮廓向量集合:

图片向量集合:

映射到ViT第一层,以诱导CLIP学习下游轮廓/照片分布

ViT权重冻结,CLIP学习到知识被蒸馏为prompts的权重。

最后新的轮廓和图片encoder为使用sketch prompt和图片prompt的CLIP's image encoder,

只训练Vs和Vp

学习跨类别的FGSBIR:

相关推荐
小程故事多_8013 小时前
RAG,基于字号频率的内容切分算法,非常强
人工智能·算法·aigc
IT 行者13 小时前
OpenClaw 浏览器自动化测试的那些坑(一):Linux Snap 版本的 Chromium 无法使用托管模式
linux·运维·服务器·人工智能
肾透侧视攻城狮13 小时前
《掌握 tf.data API:从 Dataset 创建、map/batch/shuffle 操作到预取/缓存优化的完整实战》
人工智能·深度学习·tensorflow·tf.data api·dataset 对象·map/batch/shuff·预取/并行化/缓存机制
大模型任我行13 小时前
百度:动态偏好选择提升LLM对齐稳定性
人工智能·语言模型·自然语言处理·论文笔记
A尘埃13 小时前
深度学习框架:Keras
人工智能·深度学习·keras
回眸&啤酒鸭13 小时前
【回眸】AI新鲜事(五)——2026按照自己的理想型培养自己
人工智能
AI周红伟13 小时前
周红伟:智能体构建实操:OpenClaw + Agent Skills + Seedance + RAG 案例实操
大数据·人工智能·大模型·智能体
海兰13 小时前
Elastic Stack 9.3.0 日志异常检测
人工智能
AI英德西牛仔14 小时前
豆包图片导出
人工智能
NEXT0614 小时前
拒绝“盲盒式”编程:规范驱动开发(SDD)如何重塑 AI 交付
前端·人工智能·markdown