论文阅读——What Can Human Sketches Do for Object Detection?(cvpr2023)

论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Chowdhury_What_Can_Human_Sketches_Do_for_Object_Detection_CVPR_2023_paper.pdf

代码:What Can Human Sketches Do for Object Detection? (pinakinathc.me)

一、

Baseline SBIR Framework:给一组图片:轮廓和图片,学习到对应的两个特征,然后使用余弦距离计算triplet loss。

本文使用hard-triplet loss,再加上一个分类损失

二、

使用RPN或者selective search生成框和对应的特征,输入到分类头检测头得到两个分数。通过这两个来判断图片中是否出现某个类别。分类头分数分别判断每个区域属于某个类别的概率,检测头分数判断这个patch对属于被分到的这个类别的贡献度。

labels:

,

三、

下面是微调框:

因为没有坐标标注,所以使用了一个迭代微调分类器对每个ROI预测一个精细的类别分数,标签从第k-1步迭代获得:

1、计算每个类别分数最高的patch

2、和这个patch重叠度高的(iou>0.5)patch都是一个类别

3、如果某个区域和任何一个分数高的patch重合度都不高,就是背景。

4、如果某个类别没出现在图片中,也是0

损失函数:

四、

然后检测一般是预先固定多少类别,作者克服了这个限制

每个头原本预测分数,改为计算嵌入向量

用预训练的Fs编码patch得到

计算分数:

多加了一个来自原始图片的监督Fp,

最终损失为:

五、

泛化到开放词汇检测:

轮廓向量集合:

图片向量集合:

映射到ViT第一层,以诱导CLIP学习下游轮廓/照片分布

ViT权重冻结,CLIP学习到知识被蒸馏为prompts的权重。

最后新的轮廓和图片encoder为使用sketch prompt和图片prompt的CLIP's image encoder,

只训练Vs和Vp

学习跨类别的FGSBIR:

相关推荐
躺柒34 分钟前
读大语言模型08计算基础设施
人工智能·ai·语言模型·自然语言处理·大语言模型·大语言
神州问学36 分钟前
Skywork:昆仑万维推出天工超级智能体
人工智能
神州问学39 分钟前
Graph-RAG全面综述:如何用知识图谱+大模型解决信息检索难题?
人工智能
金井PRATHAMA1 小时前
破译心智密码:神经科学如何为下一代自然语言处理绘制语义理解的蓝图
人工智能·自然语言处理
hllqkbb1 小时前
实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能
打不过快跑1 小时前
YOLO 入门实战(二):用自定义数据训练你的第一个检测模型
人工智能·后端·python
lingling0091 小时前
艾利特石油管道巡检机器人:工业安全的智能守护者
大数据·网络·人工智能
居然JuRan1 小时前
全网最全的大模型分词器(Tokenizer)总结
人工智能
聚客AI1 小时前
💡突破RAG性能瓶颈:揭秘查询转换与智能路由黑科技
人工智能·langchain·llm
腾讯云开发者1 小时前
架构师夜谈:从历史的视角,看见技术人的财富机遇
人工智能