将全连接层替换为卷积层的意义(CNN和FCN)

全连接层:CNN

将特征整合,用于分类,在图像中具体化为知道图像中有猫,但是不知道猫在哪儿。

在传统CNN中,输入是唯一确定大小的。因为全连接层要求输入是固定的。

全卷积网络:FCN

不仅可以用来分类,而且可以定位分类出的图像部分(实现每个像素的预测)。

它还有一个重要的作用就是不限制输入图像的尺寸。

替换方法:将全连接层替换为1*1的卷积核+转置卷积层

1*1的卷积核用于降低通道数。很多说法是说1*1的卷积核和全连接层的作用很相似,所以在这里分类图像。至于为什么效果是等同的,我还没研究明白,研究明白了回来补上。

转置卷积层用于图片扩大(池化层降维了)。

输出:带标签的热力图

相关推荐
新智元6 分钟前
李飞飞万字长文爆了!定义 AI 下一个十年
人工智能·openai
新智元7 分钟前
谢赛宁 × 李飞飞 ×LeCun 首次联手!寒武纪 - S「空间超感知」AI 震撼登场
人工智能·openai
Web3_Daisy14 分钟前
如何在市场波动中稳步推进代币发行
大数据·人工智能·物联网·web3·区块链
YisquareTech24 分钟前
从“零”构建零售EDI能力:实施路径与常见陷阱
网络·人工智能·edi·零售·零售edi
电科_银尘27 分钟前
【大语言模型】-- OpenAI定义的五个AGI发展阶段
人工智能·语言模型·agi
mm-q291522272928 分钟前
知乎知学堂/AGI课堂·AI大模型全栈工程师培养计划,【第二期】+【第四期】
人工智能·agi
道可云29 分钟前
以场景赋能激发新质生产力——“人工智能+”引领人机共生新图景
人工智能
进击的炸酱面38 分钟前
第五章 神经网络
人工智能·深度学习·神经网络
沉默媛43 分钟前
如何下载安装以及使用labelme,一个可以打标签的工具,实现数据集处理,详细教程
图像处理·人工智能·python·yolo·计算机视觉
Elastic 中国社区官方博客1 小时前
Elasticsearch:相关性在 AI 代理上下文工程中的影响
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索