将全连接层替换为卷积层的意义(CNN和FCN)

全连接层:CNN

将特征整合,用于分类,在图像中具体化为知道图像中有猫,但是不知道猫在哪儿。

在传统CNN中,输入是唯一确定大小的。因为全连接层要求输入是固定的。

全卷积网络:FCN

不仅可以用来分类,而且可以定位分类出的图像部分(实现每个像素的预测)。

它还有一个重要的作用就是不限制输入图像的尺寸。

替换方法:将全连接层替换为1*1的卷积核+转置卷积层

1*1的卷积核用于降低通道数。很多说法是说1*1的卷积核和全连接层的作用很相似,所以在这里分类图像。至于为什么效果是等同的,我还没研究明白,研究明白了回来补上。

转置卷积层用于图片扩大(池化层降维了)。

输出:带标签的热力图

相关推荐
l1t1 分钟前
利用小米mimo为精确覆盖矩形问题C程序添加打乱函数求出更大的解
c语言·开发语言·javascript·人工智能·算法
weixin_398187752 分钟前
YOLOv11 轻量级移动端网络ShuffleNetV2集成指南(详注)
人工智能·yolo
_Li.5 分钟前
机器学习-贝叶斯公式
人工智能·机器学习·概率论
luoganttcc8 分钟前
详细分析一下 国富论里里面 十一章 关于白银价格的 论述
人工智能
GEO AI搜索优化助手18 分钟前
生态震荡——当“摘要”成为终点,知识价值链的重塑与博弈
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
IT_陈寒19 分钟前
JavaScript 性能优化:5个被低估的V8引擎技巧让你的代码提速50%
前端·人工智能·后端
哔哩哔哩技术24 分钟前
SABER: 模式切换的混合思考模型训练范式
人工智能
baby_hua26 分钟前
20251011_Pytorch从入门到精通
人工智能·pytorch·python
لا معنى له31 分钟前
学习笔记:循环神经网络(RNN)
人工智能·笔记·学习·机器学习
桜吹雪32 分钟前
DeepSeekV3.2模型内置Agent体验
javascript·人工智能