将全连接层替换为卷积层的意义(CNN和FCN)

全连接层:CNN

将特征整合,用于分类,在图像中具体化为知道图像中有猫,但是不知道猫在哪儿。

在传统CNN中,输入是唯一确定大小的。因为全连接层要求输入是固定的。

全卷积网络:FCN

不仅可以用来分类,而且可以定位分类出的图像部分(实现每个像素的预测)。

它还有一个重要的作用就是不限制输入图像的尺寸。

替换方法:将全连接层替换为1*1的卷积核+转置卷积层

1*1的卷积核用于降低通道数。很多说法是说1*1的卷积核和全连接层的作用很相似,所以在这里分类图像。至于为什么效果是等同的,我还没研究明白,研究明白了回来补上。

转置卷积层用于图片扩大(池化层降维了)。

输出:带标签的热力图

相关推荐
抓哇能手10 分钟前
数据库系统概论
数据库·人工智能·sql·mysql·计算机
火云洞红孩儿16 分钟前
基于AI IDE 打造快速化的游戏LUA脚本的生成系统
c++·人工智能·inscode·游戏引擎·lua·游戏开发·脚本系统
风清扬雨44 分钟前
【计算机视觉】超简单!傅里叶变换的经典案例
人工智能·计算机视觉
HuggingFace1 小时前
自动评估基准 | 设计你的自动评估任务
人工智能·自动评估
GISer_Jing1 小时前
神经网络初学总结(一)
人工智能·深度学习·神经网络
szxinmai主板定制专家1 小时前
【国产NI替代】基于A7 FPGA+AI的16振动(16bits)终端PCIE数据采集板卡
人工智能·fpga开发
数据分析能量站2 小时前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%2 小时前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
szxinmai主板定制专家2 小时前
【NI国产替代】基于国产FPGA+全志T3的全国产16振动+2转速(24bits)高精度终端采集板卡
人工智能·fpga开发
YangJZ_ByteMaster2 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉