pandas教程:Interacting with Web APIs API和数据库的交互

文章目录

  • [6.3 Interacting with Web APIs (网络相关的API交互)](#6.3 Interacting with Web APIs (网络相关的API交互))
  • [6.4 Interacting with Databases(与数据库的交互)](#6.4 Interacting with Databases(与数据库的交互))

6.3 Interacting with Web APIs (网络相关的API交互)

很多网站都有公开的API,通过JSON等格式提供数据流。有很多方法可以访问这些API,这里推荐一个易用的requests包。

找到githubpandas最新的30个issues,制作一个GET HTTP request, 通过使用requests包:

python 复制代码
import pandas as pd
import numpy as np
python 复制代码
import requests
python 复制代码
url = 'https://api.github.com/repos/pandas-dev/pandas/issues'
python 复制代码
resp = requests.get(url)
python 复制代码
resp
<Response [200]>

responsejson方法能返回一个dict,包含可以解析为python objectJSON

python 复制代码
data = resp.json()
data[0]['title']
'Optimize data type'
python 复制代码
data[0]
{'assignee': None,
 'assignees': [],
 'author_association': 'NONE',
 'body': 'Hi guys, i\'m user of mysql\r\nwe have an "function" PROCEDURE ANALYSE\r\nhttps://dev.mysql.com/doc/refman/5.5/en/procedure-analyse.html\r\n\r\nit get all "dataframe" and show what\'s the best "dtype", could we do something like it in Pandas?\r\n\r\nthanks!',
 'closed_at': None,
 'comments': 1,
 'comments_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/comments',
 'created_at': '2017-11-13T22:51:32Z',
 'events_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/events',
 'html_url': 'https://github.com/pandas-dev/pandas/issues/18272',
 'id': 273606786,
 'labels': [],
 'labels_url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272/labels{/name}',
 'locked': False,
 'milestone': None,
 'number': 18272,
 'repository_url': 'https://api.github.com/repos/pandas-dev/pandas',
 'state': 'open',
 'title': 'Optimize data type',
 'updated_at': '2017-11-13T22:57:27Z',
 'url': 'https://api.github.com/repos/pandas-dev/pandas/issues/18272',
 'user': {'avatar_url': 'https://avatars0.githubusercontent.com/u/2468782?v=4',
  'events_url': 'https://api.github.com/users/rspadim/events{/privacy}',
  'followers_url': 'https://api.github.com/users/rspadim/followers',
  'following_url': 'https://api.github.com/users/rspadim/following{/other_user}',
  'gists_url': 'https://api.github.com/users/rspadim/gists{/gist_id}',
  'gravatar_id': '',
  'html_url': 'https://github.com/rspadim',
  'id': 2468782,
  'login': 'rspadim',
  'organizations_url': 'https://api.github.com/users/rspadim/orgs',
  'received_events_url': 'https://api.github.com/users/rspadim/received_events',
  'repos_url': 'https://api.github.com/users/rspadim/repos',
  'site_admin': False,
  'starred_url': 'https://api.github.com/users/rspadim/starred{/owner}{/repo}',
  'subscriptions_url': 'https://api.github.com/users/rspadim/subscriptions',
  'type': 'User',
  'url': 'https://api.github.com/users/rspadim'}}

data中的每一个元素都是一个dict,这个dict就是在github上找到的issue页面上的信息。我们可以把data传给DataFrame并提取感兴趣的部分:

python 复制代码
issues = pd.DataFrame(data, columns=['number', 'title', 
                                    'labels', 'state'])
issues

| | number | title | labels | state |
| 0 | 18272 | Optimize data type | [] | open |
| 1 | 18271 | BUG: Series.rank(pct=True).max() != 1 for a la... | [] | open |
| 2 | 18270 | (Series|DataFrame) datetimelike ops | [] | open |
| 3 | 18268 | DOC: update Series.combine/DataFrame.combine d... | [] | open |
| 4 | 18266 | DOC: updated .combine_first doc strings | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 5 | 18265 | Calling DataFrame.stack on an out-of-order col... | [] | open |
| 6 | 18264 | cleaned up imports | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 7 | 18263 | Tslibs offsets paramd | [] | open |
| 8 | 18262 | DEPR: let's deprecate | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 9 | 18258 | DEPR: deprecate (Sparse)Series.from_array | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 10 | 18255 | ENH/PERF: Add cache='infer' to to_datetime | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 11 | 18250 | Categorical.replace() unexpectedly returns non... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 12 | 18246 | pandas.MultiIndex.reorder_levels has no inplac... | [] | open |
| 13 | 18245 | TST: test tz-aware DatetimeIndex as separate m... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 14 | 18244 | RLS 0.21.1 | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 15 | 18243 | DEPR: deprecate .ftypes, get_ftype_counts | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 16 | 18242 | CLN: Remove days, seconds and microseconds pro... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 17 | 18241 | DEPS: drop 2.7 support | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 18 | 18238 | BUG: Fix filter method so that accepts byte an... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 19 | 18237 | Deprecate Series.asobject, Index.asobject, ren... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 20 | 18236 | df.plot() very slow compared to explicit matpl... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 21 | 18235 | Quarter.onOffset looks fishy | [] | open |
| 22 | 18231 | Reduce copying of input data on Series constru... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 23 | 18226 | Patch init to prevent passing invalid kwds | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 24 | 18222 | DataFrame.plot() produces incorrect legend lab... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 25 | 18220 | DataFrame.groupy renames columns when given a ... | [] | open |
| 26 | 18217 | Deprecate Index.summary | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 27 | 18216 | Pass kwargs from read_parquet() to the underly... | [{'url': 'https://api.github.com/repos/pandas-... | open |
| 28 | 18215 | DOC/DEPR: ensure that @deprecated functions ha... | [{'url': 'https://api.github.com/repos/pandas-... | open |

29 18213 Deprecate Series.from_array ? [{'url': 'https://api.github.com/repos/pandas-... open

6.4 Interacting with Databases(与数据库的交互)

如果在工作中,大部分数据并不会以textexcel的格式存储。最广泛使用的是SQL-based的关系型数据库(SQL Server,PostgreSQL,MySQL)。选择数据库通常取决于性能,数据整合性,实际应用的可扩展性。

读取SQLDataFrame非常直观,pandas中有一些函数能简化这个过程。举个例子,这里创建一个SQLite数据库,通过使用python内建的sqlite3 driver

python 复制代码
import sqlite3
import pandas as pd
python 复制代码
query = """
CREATE TABLE test
(a VARCHAR(20), b VARCHAR(20),
 c REAL,        d INTEGER
);"""
python 复制代码
con = sqlite3.connect('../examples/mydata.sqlite')
python 复制代码
con.execute(query)
<sqlite3.Cursor at 0x1049931f0>
python 复制代码
con.commit()

然后我们插入几行数据:

python 复制代码
data = [('Atlanta', 'Georgia', 1.25, 6),
        ('Tallahassee', 'Florida', 2.6, 3),
        ('Sacramento', 'California', 1.7, 5)]
python 复制代码
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
python 复制代码
con.executemany(stmt, data)
<sqlite3.Cursor at 0x1049932d0>
python 复制代码
con.commit()

大部分pythonSQL驱动(PyODBC, psycopg2, MySQLdb, pymssql, 等)返回a list of tuple,当从一个表格选择数据的时候:

python 复制代码
cursor = con.execute('select * from test')
python 复制代码
rows = cursor.fetchall()
python 复制代码
rows
[('Atlanta', 'Georgia', 1.25, 6),
 ('Tallahassee', 'Florida', 2.6, 3),
 ('Sacramento', 'California', 1.7, 5)]

我们可以把list of tuples传递给DataFrame,但是我们也需要column names,包含cursordescription属性:

python 复制代码
cursor.description
(('a', None, None, None, None, None, None),
 ('b', None, None, None, None, None, None),
 ('c', None, None, None, None, None, None),
 ('d', None, None, None, None, None, None))
python 复制代码
pd.DataFrame(rows, columns=[x[0] for x in cursor.description])

| | a | b | c | d |
| 0 | Atlanta | Georgia | 1.25 | 6 |
| 1 | Tallahassee | Florida | 2.60 | 3 |

2 Sacramento California 1.70 5

我们不希望每次询问数据库的时候都重复以上步骤,这样对计算机很不好(逐步对计算机系统或文件做小改动导致大的损害)。SQLAlchemy计划是一个六星的Python SQL工具箱,它能抽象出不同SQL数据库之间的不同。pandas有一个read_sql函数,能让我们从SQLAlchemy connection从读取数据。这里我们用SQLAlchemy连接到同一个SQLite数据库,并从之前创建的表格读取数据:

python 复制代码
import sqlalchemy as sqla
python 复制代码
db = sqla.create_engine('sqlite:///../examples/mydata.sqlite')
python 复制代码
pd.read_sql('select * from test', db)

| | a | b | c | d |
| 0 | Atlanta | Georgia | 1.25 | 6 |
| 1 | Tallahassee | Florida | 2.60 | 3 |

2 Sacramento California 1.70 5
相关推荐
bst@微胖子1 小时前
Python高级语法之selenium
开发语言·python·selenium
wyk123_0461 小时前
Django 连接(sqlserver)数据库方法
数据库·sqlserver·django
王小义笔记1 小时前
Postman如何流畅使用DeepSeek
开发语言·测试工具·lua·postman·deepseek
查理零世2 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
Smile_Gently2 小时前
前端:最简单封装nmp插件(组件)过程。
前端·javascript·vue.js·elementui·vue
魔尔助理顾问3 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋3 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
鹿鸣悠悠4 小时前
第二月:学习 NumPy、Pandas 和 Matplotlib 是数据分析和科学计算的基础
学习·numpy·pandas
流星白龙5 小时前
【C++】36.C++IO流
开发语言·c++
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法