[LeetCode] 4.寻找两个正序数组的中位数

一、题目描述

给定两个大小分别为 mn 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数

算法的时间复杂度应该为 O(log (m+n))

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

二、题解

2.1 方法一:二分查找

给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:

  • 使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数。

  • 不需要合并两个有序数组,只要找到中位数的位置即可。由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。维护两个指针,初始时分别指向两个数组的下标 0 的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

假设两个有序数组的长度分别为 mn,上述两种思路的复杂度如何?

第一种思路的时间复杂度是 O(m+n),空间复杂度是 O(m+n)。第二种思路虽然可以将空间复杂度降到 O(1),但是时间复杂度仍是 O(m+n)

如何把时间复杂度降低到 O(log(m+n)) 呢?如果对时间复杂度的要求有 log,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当 m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k(m+n)/2(m+n)/2+1

假设两个有序数组分别是 AB。要找到第 k 个元素,我们可以比较 A[k/2−1]B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1]B[k/2−1] 的前面分别有 A[0 .. k/2−2]B[0 .. k/2−2],即 k/2−1个元素,对于 A[k/2−1]B[k/2−1] 中的较小值,最多只会有 (k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。

因此我们可以归纳出三种情况:

  • 如果 A[k/2−1]<B[k/2−1],则比 A[k/2−1] 小的数最多只有 A 的前 k/2−1 个数和 B 的前 k/2−1 个数,即比 A[k/2−1] 小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第 k 个数,A[0]A[k/2−1] 也都不可能是第 k 个数,可以全部排除。

  • 如果 A[k/2−1]>B[k/2−1],则可以排除 B[0]B[k/2−1]

  • 如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

可以看到,比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除 k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。

有以下三种情况需要特殊处理:

如果 A[k/2−1] 或者 B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将 k 减去 k/2

如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。

如果 k=1,我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是 49,长度之和是 13,中位数是两个有序数组中的第7 个元素,因此需要找到第 k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即 A[2]B[2],如下面所示:

A: 1 3 4 9
       ↑
B: 1 2 3 4 5 6 7 8 9
       ↑

由于 A[2]>B[2],因此排除 B[0]B[2],即数组 B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4

下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1]B[4],如下面所示,其中方括号部分表示已经被排除的数。

A: 1 3 4 9
     ↑
B: [1 2 3] 4 5 6 7 8 9
             ↑

由于 A[1]<B[4],因此排除 A[0]A[1],即数组 A 的下标偏移变为 2,同时更新 k 的值:k=k−k/2=2

下一步寻找,比较两个有序数组中下标为 k/2−1=0 的数,即比较 A[2]B[3],如下面所示,其中方括号部分表示已经被排除的数。

A: [1 3] 4 9
         ↑
B: [1 2 3] 4 5 6 7 8 9
           ↑

由于 A[2]=B[3],根据之前的规则,排除 A 中的元素,因此排除 A[2],即数组 A 的下标偏移变为 3,同时更新 k 的值: k=k−k/2=1

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于 A[3]>B[3],因此第 k 个数是 B[3]=4

A: [1 3 4] 9
           ↑
B: [1 2 3] 4 5 6 7 8 9
           ↑
2.1.1 Python
python 复制代码
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
    def getKthElement(k):
        """
        - 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
        - 这里的 "/" 表示整除
        - nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
        - nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
        - 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
        - 这样 pivot 本身最大也只能是第 k-1 小的元素
        - 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
        - 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
        - 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
        """
        
        index1, index2 = 0, 0
        while True:
            # 特殊情况
            if index1 == m:
                return nums2[index2 + k - 1]
            if index2 == n:
                return nums1[index1 + k - 1]
            if k == 1:
                return min(nums1[index1], nums2[index2])

            # 正常情况
            newIndex1 = min(index1 + k // 2 - 1, m - 1)
            newIndex2 = min(index2 + k // 2 - 1, n - 1)
            pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2]
            if pivot1 <= pivot2:
                k -= newIndex1 - index1 + 1
                index1 = newIndex1 + 1
            else:
                k -= newIndex2 - index2 + 1
                index2 = newIndex2 + 1
    
    m, n = len(nums1), len(nums2)
    totalLength = m + n
    if totalLength % 2 == 1:
        return getKthElement((totalLength + 1) // 2)
    else:
        return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2
2.1.2 C++
cpp 复制代码
int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) 
{
    /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
     * 这里的 "/" 表示整除
     * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
     * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
     * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
     * 这样 pivot 本身最大也只能是第 k-1 小的元素
     * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
     * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
     * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
     */

    int m = nums1.size();
    int n = nums2.size();
    int index1 = 0, index2 = 0;

    while (true) 
    {
        // 边界情况
        if (index1 == m) 
        {
            return nums2[index2 + k - 1];
        }
        if (index2 == n) 
        {
            return nums1[index1 + k - 1];
        }
        if (k == 1) 
        {
            return min(nums1[index1], nums2[index2]);
        }

        // 正常情况
        int newIndex1 = min(index1 + k / 2 - 1, m - 1);
        int newIndex2 = min(index2 + k / 2 - 1, n - 1);
        int pivot1 = nums1[newIndex1];
        int pivot2 = nums2[newIndex2];
        if (pivot1 <= pivot2) 
        {
            k -= newIndex1 - index1 + 1;
            index1 = newIndex1 + 1;
        }
        else 
        {
            k -= newIndex2 - index2 + 1;
            index2 = newIndex2 + 1;
        }
    }
}

double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) 
{
    int totalLength = nums1.size() + nums2.size();
    if (totalLength % 2 == 1) 
    {
        return getKthElement(nums1, nums2, (totalLength + 1) / 2);
    }
    else 
    {
        return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
    }
}
2.1.3 复杂度分析
  • 时间复杂度: O ( l o g ⁡ ( m + n ) ) O(log⁡(m+n)) O(log⁡(m+n)),其中 m m m 和 n n n 分别是数组 n u m s 1 nums1 nums1 和 n u m s 2 nums2 nums2 的长度。初始时有 k = ( m + n ) / 2 k=(m+n)/2 k=(m+n)/2 或 k = ( m + n ) / 2 + 1 k=(m+n)/2+1 k=(m+n)/2+1,每一轮循环可以将查找范围减少一半,因此时间复杂度是 O ( l o g ⁡ ( m + n ) ) O(log⁡(m+n)) O(log⁡(m+n))。

  • 空间复杂度: O ( 1 ) O(1) O(1)。

2.2 方法二:划分数组

说明

方法一的时间复杂度已经很优秀了,但本题存在时间复杂度更低的一种方法。这里给出推导过程,勇于挑战自己的读者可以进行尝试。

思路与算法

为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,就很接近答案了。

首先,在任意位置 i i i 将 A A A 划分成两个部分:

       left_A            |          right_A
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

由于 A A A 中有 m m m 个元素, 所以有 m+1 种划分的方法(i∈[0,m])。

len(left_A)= i i i, len(right_A)= m − i m−i m−i.

注意:当 i = 0 i=0 i=0 时,left_A 为空集, 而当 i = m i=m i=m 时, right_A 为空集。

采用同样的方式,在任意位置 j j j 将 B 划分成两个部分:

       left_B            |          right_B
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

将 left_A 和 left_B 放入一个集合,并将 right_A 和 right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和 right_part:

      left_part          |         right_part
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

当 A 和 B 的总长度是偶数时,如果可以确认:

  • len(left_part)=len(right_part)
  • max(left_part)≤min(right_part)

那么, { A , B } \{A,B\} {A,B} 中的所有元素已经被划分为相同长度的两个部分,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值和后一部分的最小值的平均值:
m e d i a n = m a x ( l e f t _ p a r t ) + m i n ( r i g h t _ p a r t ) 2 median=\frac {max(left\_part)+min(right\_part)}2 median=2max(left_part)+min(right_part)

当 A 和 B 的总长度是奇数时,如果可以确认:

  • len(left_part)=len(right_part)+1
  • max(left_part)≤min(right_part)

那么, { A , B } \{A,B\} {A,B} 中的所有元素已经被划分为两个部分,前一部分比后一部分多一个元素,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值:
m e d i a n = m a x ( l e f t _ p a r t ) median=max(left\_part) median=max(left_part)

第一个条件对于总长度是偶数和奇数的情况有所不同,但是可以将两种情况合并。第二个条件对于总长度是偶数和奇数的情况是一样的。

要确保这两个条件,只需要保证:

  • i + j = m − i + n − j i+j=m−i+n−j i+j=m−i+n−j (当 m + n m+n m+n 为偶数)或 i + j = m − i + n − j + 1 i+j=m−i+n−j+1 i+j=m−i+n−j+1 (当 m + n m+n m+n 为奇数)。等号左侧为前一部分的元素个数,等号右侧为后一部分的元素个数。将 i i i 和 j j j 全部移到等号左侧,我们就可以得到 i + j = m + n + 1 2 i+j=\frac{m+n+1}2 i+j=2m+n+1。这里的分数结果只保留整数部分。

  • 0 ≤ i ≤ m 0≤i≤m 0≤i≤m, 0 ≤ j ≤ n 0≤j≤n 0≤j≤n。如果我们规定 A 的长度小于等于 B 的长度,即 m ≤ n m≤n m≤n。这样对于任意的 i ∈ [ 0 , m ] i∈[0,m] i∈[0,m],都有 j = m + n + 1 2 − i ∈ [ 0 , n ] j=\frac{m+n+1}2−i∈[0,n] j=2m+n+1−i∈[0,n] ,那么我们在 [ 0 , m ] [0,m] [0,m] 的范围内枚举 i i i 并得到 j j j,就不需要额外的性质了。

    • 如果 A 的长度较大,那么我们只要交换 A 和 B 即可。

    • 如果 m > n m>n m>n ,那么得出的 j j j 有可能是负数。

  • B [ j − 1 ] ≤ A [ i ] B[j−1]≤A[i] B[j−1]≤A[i] 以及 A [ i − 1 ] ≤ B [ j ] A[i−1]≤B[j] A[i−1]≤B[j],即前一部分的最大值小于等于后一部分的最小值。

为了简化分析,假设 A [ i − 1 ] , B [ j − 1 ] , A [ i ] , B [ j ] A[i−1],B[j−1],A[i],B[j] A[i−1],B[j−1],A[i],B[j] 总是存在。对于 i = 0 、 i = m 、 j = 0 、 j = n i=0、i=m、j=0、j=n i=0、i=m、j=0、j=n 这样的临界条件,我们只需要规定 A [ − 1 ] = B [ − 1 ] = − ∞ A[−1]=B[−1]=−∞ A[−1]=B[−1]=−∞, A [ m ] = B [ n ] = ∞ A[m]=B[n]=∞ A[m]=B[n]=∞ 即可。这也是比较直观的:当一个数组不出现在前一部分时,对应的值为负无穷,就不会对前一部分的最大值产生影响;当一个数组不出现在后一部分时,对应的值为正无穷,就不会对后一部分的最小值产生影响。

所以我们需要做的是:

在 [ 0 , m ] [0,m] [0,m] 中找到 i i i,使得:

B [ j − 1 ] ≤ A [ i ] 且 A [ i − 1 ] ≤ B [ j ] ,其中 j = m + n + 1 2 − i B[j−1]≤A[i] 且 A[i−1]≤B[j],其中 j=\frac{m+n+1}2−i B[j−1]≤A[i]且A[i−1]≤B[j],其中j=2m+n+1−i

我们证明它等价于:

在 [ 0 , m ] [0,m] [0,m] 中找到最大的 i i i,使得:

A [ i − 1 ] ≤ B [ j ] ,其中 j = m + n + 1 2 − i A[i−1]≤B[j],其中 j=\frac{m+n+1}2−i A[i−1]≤B[j],其中j=2m+n+1−i

这是因为:

当 i i i 从 0 ∼ m 0∼m 0∼m 递增时, A [ i − 1 ] A[i−1] A[i−1] 递增, B [ j ] B[j] B[j] 递减,所以一定存在一个最大的 i i i 满足 A [ i − 1 ] ≤ B [ j ] A[i−1]≤B[j] A[i−1]≤B[j];

如果 i i i 是最大的,那么说明 i + 1 i+1 i+1 不满足。将 i + 1 i+1 i+1 带入可以得到 A [ i ] > B [ j − 1 ] A[i]>B[j−1] A[i]>B[j−1],也就是 B [ j − 1 ] < A [ i ] B[j−1]<A[i] B[j−1]<A[i],就和我们进行等价变换前 i i i 的性质一致了(甚至还要更强)。

因此我们可以对 i i i 在 [ 0 , m ] [0,m] [0,m] 的区间上进行二分搜索,找到最大的满足 A [ i − 1 ] ≤ B [ j ] A[i−1]≤B[j] A[i−1]≤B[j] 的 i i i 值,就得到了划分的方法。此时,划分前一部分元素中的最大值,以及划分后一部分元素中的最小值,才可能作为就是这两个数组的中位数。

2.2.1 Python
python 复制代码
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
    if len(nums1) > len(nums2):
        return self.findMedianSortedArrays(nums2, nums1)

    infinty = 2**40
    m, n = len(nums1), len(nums2)
    left, right = 0, m
    # median1:前一部分的最大值
    # median2:后一部分的最小值
    median1, median2 = 0, 0

    while left <= right:
        # 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
        # // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
        i = (left + right) // 2
        j = (m + n + 1) // 2 - i

        # nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
        nums_im1 = (-infinty if i == 0 else nums1[i - 1])
        nums_i = (infinty if i == m else nums1[i])
        nums_jm1 = (-infinty if j == 0 else nums2[j - 1])
        nums_j = (infinty if j == n else nums2[j])

        if nums_im1 <= nums_j:
            median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j)
            left = i + 1
        else:
            right = i - 1

    return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1
2.2.2 C++
cpp 复制代码
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) 
{
    if (nums1.size() > nums2.size()) 
    {
        return findMedianSortedArrays(nums2, nums1);
    }

    int m = nums1.size();
    int n = nums2.size();
    int left = 0, right = m;
    // median1:前一部分的最大值
    // median2:后一部分的最小值
    int median1 = 0, median2 = 0;

    while (left <= right) 
    {
        // 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
        // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
        int i = (left + right) / 2;
        int j = (m + n + 1) / 2 - i;

        // nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
        int nums_im1 = (i == 0 ? INT_MIN : nums1[i - 1]);
        int nums_i = (i == m ? INT_MAX : nums1[i]);
        int nums_jm1 = (j == 0 ? INT_MIN : nums2[j - 1]);
        int nums_j = (j == n ? INT_MAX : nums2[j]);

        if (nums_im1 <= nums_j) 
        {
            median1 = max(nums_im1, nums_jm1);
            median2 = min(nums_i, nums_j);
            left = i + 1;
        } else 
        {
            right = i - 1;
        }
    }

    return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;
}
2.2.3 复杂度分析
  • 时间复杂度: O ( l o g ⁡ m i n ⁡ ( m , n ) ) ) O(log⁡min⁡(m,n))) O(log⁡min⁡(m,n))),其中 m m m 和 n n n 分别是数组 n u m s 1 nums1 nums1 和 n u m s 2 nums2 nums2 的长度。查找的区间是 [ 0 , m ] [0,m] [0,m],而该区间的长度在每次循环之后都会减少为原来的一半。所以,只需要执行 l o g ⁡ m log⁡m log⁡m 次循环。由于每次循环中的操作次数是常数,所以时间复杂度为 O ( l o g ⁡ m ) O(log⁡m) O(log⁡m)。由于我们可能需要交换 n u m s 1 nums1 nums1 和 n u m s 2 nums2 nums2 使得 m ≤ n m≤n m≤n,因此时间复杂度是 O ( l o g ⁡ m i n ⁡ ( m , n ) ) ) O(log⁡min⁡(m,n))) O(log⁡min⁡(m,n)))。

  • 空间复杂度: O ( 1 ) O(1) O(1)。

相关推荐
因特麦克斯3 分钟前
每日一题&智能指针
数据结构·算法·leetcode
蹉跎x13 分钟前
力扣104. 二叉树的最大深度
算法·leetcode·职场和发展
SZ17011023114 分钟前
实时检测跟踪模块
python
gaogao_jack15 分钟前
[Leetcode小记] 3233. 统计不是特殊数字的数字数量
java·算法·leetcode
澄澈i21 分钟前
设计模式学习[9]---模板方法模式
c++·学习·设计模式·模板方法模式
沃和莱特23 分钟前
C++中类的继承
数据库·c++·编程·c·指针·友元函数
zzzhpzhpzzz29 分钟前
设计模式——解释器模式
算法·设计模式·解释器模式
一只鸡某39 分钟前
实习冲刺第二十九天
数据结构·c++·算法·leetcode
鲨鱼吃橘子1 小时前
【C++融会贯通】哈希表的使用
c语言·开发语言·数据结构·c++·链表·哈希算法·散列表
誓约酱1 小时前
Linux系统常用指令
linux·运维·服务器·c++