如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
Light603 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升3 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide3 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农3 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews3 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体3 小时前
机器人的罪与罚
人工智能·机器人
三不原则3 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM4 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员4 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay4 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全