如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
计算生物前沿28 分钟前
单细胞分析教程 | (二)标准化、特征选择、降为、聚类及可视化
人工智能·机器学习·聚类
kyle~1 小时前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
运器1231 小时前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
超龄超能程序猿1 小时前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
卷福同学1 小时前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
帅次1 小时前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ2 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用2 小时前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小2 小时前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV2 小时前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人