如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
社会零时工11 分钟前
【OpenCV】相机标定之利用棋盘格信息标定
人工智能·数码相机·opencv
像素工坊可视化11 分钟前
监控升级:可视化如何让每一个细节 “说话”
运维·人工智能·安全
后端小肥肠17 分钟前
新店3天爆100单!我用零代码Coze搭客服,竟成出单神器?(附喂饭级教程)
人工智能·aigc·coze
AI大模型知识21 分钟前
Qwen3 Embeding模型Lora微调实战
人工智能·低代码·llm
Coovally AI模型快速验证1 小时前
SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈
人工智能·神经网络·算法·yolo·计算机视觉·目标跟踪·无人机
Brduino脑机接口技术答疑1 小时前
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
人工智能·算法·脑机接口·新手入门
jndingxin1 小时前
OPenCV CUDA模块光流处理------利用Nvidia GPU的硬件加速能力来计算光流类cv::cuda::NvidiaHWOpticalFlow
人工智能·opencv·计算机视觉
计算机小手1 小时前
开源大模型网关:One API实现主流AI模型API的统一管理与分发
人工智能·语言模型·oneapi
kk5792 小时前
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
人工智能·windows·vscode·chatgpt
柠檬味拥抱2 小时前
融合CLIP与语言规划的大规模具身智能系统设计探索
人工智能