如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
deephub14 小时前
1小时微调 Gemma 3 270M 端侧模型与部署全流程
人工智能·深度学习·大语言模型·gemma
Coding茶水间14 小时前
基于深度学习的草莓健康度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
weisian15114 小时前
入门篇--人工智能发展史-6-AI视觉的“注意力革命”,大模型的核心动力--Transformer
人工智能·深度学习·transformer
_Li.14 小时前
机器学习-特征选择
人工智能·python·机器学习
囊中之锥.14 小时前
机器学习第一部分---线性回归
人工智能·机器学习·线性回归
司马阅-SmartRead14 小时前
学术研究与产业实践深度融合:司马阅AI合伙人冀文辉亮相「首届创新管理与JPIM论文工作坊」,产学研一体化推动企业AI落地
大数据·人工智能
YANshangqian14 小时前
基于Chromium的隐私优先浏览器
人工智能·intellij-idea
开开心心就好14 小时前
免费卸载工具,可清理残留批量管理启动项
linux·运维·服务器·windows·随机森林·pdf·1024程序员节
躺柒15 小时前
读人机沟通法则:理解数字世界的设计与形成01机器循环运行
人工智能·计算机·计算·数字世界·人机对话
智算菩萨15 小时前
摩擦电纳米发电机近期进展的理论脉络梳理:从接触起电到统一建模与能量转换
linux·人工智能·算法