文章目录
Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头
一、概述
sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。
本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。
泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:
当模型复杂度不足时,机器学习不足,会出现欠拟合
现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合
现象。
因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点
。