如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
熬夜敲代码的小N9 小时前
Agentic AI 实战全指南:从原理到LangChain落地开发
人工智能·langchain
肾透侧视攻城狮9 小时前
《深入PyTorch数据引擎:自定义数据封装、高效加载策略与多源融合实战》
人工智能·神经网络·自定义dataset·dataloader 加载数据·常见的图像预处理操作·图像数据增强·加载 mnist 数据集
zandy10119 小时前
AI驱动全球销售商机管理:钉钉DingTalk A1的跨域管理智能解决方案
人工智能·百度·钉钉
福将~白鹿9 小时前
Qwen3-VL-32B-Instruct vs Qwen2.5-VL-32B-Instruct 能力评分对比
人工智能
paul_chen2110 小时前
openclaw配置教程(linux+局域网ollama)
人工智能·飞书
铁蛋AI编程实战10 小时前
ChatWiki 开源 AI 文档助手搭建教程:多格式文档接入,打造专属知识库机器人
java·人工智能·python·开源
Loacnasfhia910 小时前
【深度学习】【目标检测】YOLO11-C3k2-Faster-EMA模型实现草莓与番茄成熟度及病害识别系统
人工智能·深度学习·目标检测
Horizon_Ruan10 小时前
从零开始掌握AI:LLM、RAG到Agent的完整学习路线图
人工智能·学习·ai编程
lpfasd12310 小时前
Token 消耗监控指南
人工智能
wukangjupingbb10 小时前
在 Windows 系统上一键部署 **Moltbot**
人工智能·windows·agent