如何用sklearn对随机森林调参

文章目录

Link:https://zhuanlan.zhihu.com/p/126288078
Author:陈罐头

一、概述

sklearn是目前python中十分流行的用来实现机器学习的第三方包,其中包含了多种常见算法如:决策树,逻辑回归、集成算法(如随机森林)等等。

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于**泛化误差(Genelization Error)**与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率 的指标,其与模型复杂度的关系如下图所示:

当模型复杂度不足时,机器学习不足,会出现欠拟合现象,泛化误差变大;当复杂度逐渐提高到最佳模型复杂度时,泛化误差会达到最低点(即最高准确度);若复杂度仍在提高,泛化误差从最小值开始逐渐增大,出现过拟合现象。

因此,我们的目的,是通过不断调参来不断调整模型复杂度,尽可能地接近泛化误差最低点

参考链接

相关推荐
MoonOutCloudBack6 分钟前
VeRL 框架 RL 微调大语言模型,algorithm.use_pf_ppo 参数详解
人工智能·机器学习·语言模型·自然语言处理
hhzz13 分钟前
【Vision人工智能设计 】Wan(万相) 内容创作平台与能力
人工智能·阿里·视觉大模型·wan·万相
黑巧克力可减脂14 分钟前
Vibe Coding重构CRM:以AI编程之术,破传统管理之困,承革新致远之道
人工智能·重构·软件工程·ai编程
wuxi_joe15 分钟前
工业信息化与AI:制造业配置能力的重构
人工智能·重构
heimeiyingwang22 分钟前
从 0 到 1:企业 AI 战略规划与落地路线图
大数据·人工智能
新缸中之脑26 分钟前
让AI代理演示他们的工作
人工智能
专注VB编程开发20年29 分钟前
百度AI垃圾说高通占小米股份15%雷总23%
人工智能·百度
Tadas-Gao33 分钟前
架构逆转向量:AI时代规范驱动开发的范式重构与实践图谱
人工智能·云原生·重构·架构·系统架构·大模型
小程故事多_8033 分钟前
自省式检索Self-RAG,让AI学会“知之为知之”,构建可信赖的智能问答闭环
人工智能·aigc
阿杰学AI38 分钟前
AI核心知识98——大语言模型之 Generative AI(简洁且通俗易懂版)
人工智能·语言模型·自然语言处理·aigc·生成式ai·generative ai