✨作者主页 :IT研究室✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
文章目录
一、前言
随着社会经济的发展和科技的进步,城市天气预警实时监控平台已经成为公共安全领域的重要工具。这类平台运用大数据技术对气象数据进行采集、存储、处理、分析和可视化,可以及时发现和预测天气异常,防范和应对气象灾害,从而保障人们生命财产安全,提高社会运行效率。近年来,全球气候变化加剧,各种恶劣天气事件频繁发生,对城市天气预警实时监控平台的需求也日益增长。因此,本课题旨在构建一个基于大数据的市天气预警实时监控平台,以提高天气预警的准确性和实时性。
目前,许多城市已经建立了天气预警系统,但这些系统普遍存在以下问题:
数据来源单一:现有系统主要依赖于气象部门的观测数据,缺乏对社交媒体、互联网等多元化数据源的利用,导致预警信息的覆盖面不全。
数据处理能力不足:面对海量的气象数据,现有系统的数据处理能力有限,无法进行深入的数据分析和挖掘,影响了预警准确率的提高。
信息发布渠道有限:现有系统主要通过电视、广播、手机短信等传统渠道发布预警信息,缺乏对新型社交媒体的利用,导致信息传播效率低下。
缺乏实时监控功能:现有系统缺乏对天气状况的实时监控功能,无法及时发现和应对突发天气事件。
本课题旨在构建一个基于大数据的市天气预警实时监控平台,实现以下功能:
多元化数据采集:利用大数据技术,从气象部门、社交媒体、互联网等多个渠道采集气象数据,提高数据来源的多样性。
数据处理和分析:通过数据清洗、挖掘等技术,对采集到的数据进行处理和分析,以提高预警准确性和实时性。
预警信息发布:根据不同级别的预警信息,通过多种渠道发布预警信息,包括社交媒体、手机APP、广播、电视等,以提高信息传播效率。
实时监控功能:通过实时监控技术,及时发现和应对突发天气事件,保障人们生命财产安全。
本课题的研究意义在于:
提高预警准确性和实时性:通过大数据技术和实时监控功能,可以提高预警准确性和实时性,减少灾害损失。
增进社会运行效率的提高:通过多元化的数据采集和深入的数据分析,可以了解天气状况和社会需求,优化资源配置,提高社会运行效率。
推动公共安全领域的发展:本课题的研究成果可以应用于其他公共安全领域,如疫情预警、交通安全等,推动公共安全领域的发展。
二、开发环境
- 大数据技术:Hadoop、Spark、Hive
- 开发技术:Python、Django框架、Vue、Echarts、机器学习
- 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机
三、系统界面展示
- 基于大数据的市天气预警实时监控平台界面展示:
四、代码参考
- 大数据项目实战代码参考:
java(贴上部分代码)
# 训练并保存模型并返回MAE
import ProcessData
import GetData
r = GetModel.getModel()
print("MAE:", r[0])
# 读取保存的模型
model = joblib.load('Model.pkl')
# 最终预测结果
preds = model.predict(r[1])
print("未来7天预测")
for a in range(0, 7):
today = DT.datetime.now()
time = (today + DT.timedelta(days=a)).date()
print(time.year, '-', time.month, '-', time.day,
'最高气温', preds[a][0],
'最低气温', preds[a][1],
"空气质量", preds[a][2],
)
'''
数据可视化代码
通过爬虫获取到的天气信息,利用pyecharts框架来实现绘图功能,实现天气的可视化
'''
'''
可视化当日长春天气数据
'''
# 获取当日长春天气数据
today_data = GetData.getToday(54161)
headers_ = ["日期", "最高温", "最低温", "天气", "风力风向", "空气质量指数"]
rows_ = [
[today_data['日期'].values[0], today_data['最高温'].values[0], today_data['最低温'].values[0],
today_data['天气'].values[0], today_data['风力风向'].values[0], today_data['空气质量指数'].values[0]],
]
def table_main() ->Table:
c=(
Table()
.add(headers_, rows_)
.set_global_opts(
title_opts=ComponentTitleOpts(title="", subtitle="")
)
)
return c
'''
可视化当日长春近一周的天气质量和气温
'''
# 获取最近七天的天气数据
week_data=GetData.getWeek(54161)
# 最近长春一周的天气和空气
airs = ProcessData.setAir(week_data)
low_temperature = ProcessData.setLowTemp(week_data)
high_temperature = ProcessData.setHighTemp(week_data)
def grid_week() -> Grid:
x_data = ["前七天", "前六天", "前五天", "前四天", "前三天", "前两天", "前一天"]
bar = (
Bar()
.add_xaxis(x_data)
.add_yaxis(
"最高温",
high_temperature,
yaxis_index=0,
color="#d14a61",
)
.add_yaxis(
"最低温",
low_temperature,
yaxis_index=1,
color="#5793f3",
)
.extend_axis(
yaxis=opts.AxisOpts(
name="最高温",
type_="value",
min_=-30,
max_=40,
position="right",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
)
)
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="天气质量指数",
min_=0,
max_=300,
position="left",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#675bba")
),
axislabel_opts=opts.LabelOpts(formatter="{value}"),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
)
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
name="最低温",
min_=-30,
max_=40,
position="right",
offset=80,
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#5793f3")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
),
title_opts=opts.TitleOpts(title=""),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis(
"天气质量指数 "
"优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
airs,
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
return Grid().add(
bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
)
'''
可视化预测长春的天气
'''
# 预测长春一周的天气和空气
predict_airs=[]
predict_low_temperature=[]
predict_high_temperature=[]
x_data=[]
for i in range(0,7):
predict_high_temperature.append(round(preds[i][0],4))
predict_low_temperature.append(round(preds[i][1],4))
predict_airs.append(round(preds[i][2],4))
x_data.append((today + DT.timedelta(days=i)).date())
def grid_week_predict() -> Grid:
bar = (
Bar()
.add_xaxis(x_data)
.add_yaxis(
"最高温",
predict_high_temperature,
yaxis_index=0,
color="#d14a61",
)
.add_yaxis(
"最低温",
predict_low_temperature,
yaxis_index=1,
color="#5793f3",
)
.extend_axis(
yaxis=opts.AxisOpts(
name="最高温",
type_="value",
min_=-30,
max_=40,
position="right",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
)
)
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="天气质量指数",
min_=0,
max_=300,
position="left",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#675bba")
),
axislabel_opts=opts.LabelOpts(formatter="{value}"),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
)
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
name="最低温",
min_=-30,
max_=40,
position="right",
offset=80,
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#5793f3")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
),
title_opts=opts.TitleOpts(title=""),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis(
"天气质量指数 "
"优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
predict_airs,
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
return Grid().add(
bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
)
'''
获取全国各省会城市今日的天气情况
'''
china_today = GetData.getChinaToday()
china_today.to_csv("china_today.csv")
def setData(str,i):
return china_today[i:i+1][str].values[0]
provinces = [
"黑龙江","内蒙古", "吉林", "辽宁", "河北","天津","山西", "陕西",
"甘肃","宁夏", "青海","新疆", "西藏", "四川", "重庆", "山东", "河南",
"江苏", "安徽","湖北", "浙江", "福建", "江西", "湖南", "贵州",
"广西", "海南","上海","广东","云南","台湾"
]
rows=[]
for i in range(0,31):
rows.append([provinces[i],setData('最低温',i),setData('最高温',i),setData('天气',i),setData('风力风向',i)])
def today_china_table() ->Table:
c=(
Table()
.add(["省份","最低温","最高温", "天气", "风力风向"], rows)
.set_global_opts(
title_opts=ComponentTitleOpts(title="今日全国各省会城市的天气信息表", subtitle="")
)
)
return c
china_airs = ProcessData.setAir(china_today)
airs_list=[]
for i in range(0,31):
airs_list.append(china_airs[i])
def today_china() ->Map:
c = (
Map()
.add("天气质量指数 优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)", [list(z) for z in zip(provinces, airs_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="今日中国空气质量"),
visualmap_opts=opts.VisualMapOpts(max_=300),
)
)
return c
# 分页图的标题
tab = Tab()
tab.add(table_main(), "今日长春")
tab.add(grid_week_predict(), "未来长春")
tab.add(grid_week(), "近一周长春")
tab.add(today_china_table(), "今日中国天气")
tab.add(today_china(), "今日全国空气质量")
tab.render("天气网.html")
'''
all_high_t = []
all_low_t = []
all_air = []
all_high_t.append(preds[a][0])
all_low_t.append(preds[a][1])
all_air.append(preds[a][2])
temp = {"最高温": all_high_t, "最低温": all_low_t, "空气质量": all_air}
# 绘画折线图
plt.plot(range(1, 7), temp["最高温"], color="red", label="high_t")
plt.plot(range(1, 7), temp["最低温"], color="blue", label="low_t")
plt.legend() # 显示图例
plt.ylabel("Temperature(°C)")
plt.xlabel("day")
# 显示
plt.show()
plt.plot(range(1, 7), temp["空气质量"], color="black", label="air")
plt.legend()
plt.ylabel(" ")
plt.xlabel("day")
plt.show()
'''
五、论文参考
- 计算机毕业设计选题推荐-基于大数据的市天气预警实时监控平台论文参考:
六、系统视频
基于大数据的市天气预警实时监控平台系统项目视频:
大数据毕业设计选题推荐-市天气预警实时监控平台-Hadoop
结语
大数据毕业设计选题推荐-市天气预警实时监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我