直方图学习

直方图均衡化(Histogram Equalization)是一种用于增强图像对比度的图像处理技术,通过重新分配图像的像素值,使图像中的亮度级别更加均匀,以改善图像的视觉质量。下面是进行直方图均衡化的一般步骤:

  1. 计算原始图像的直方图:首先,计算原始图像的灰度直方图,以了解不同亮度级别的像素数量分布。

  2. 计算累积分布函数(CDF):对于每个亮度级别,计算其累积分布函数(CDF),这是一个表示在该亮度级别以下像素数量累积的函数。CDF可以通过对灰度直方图进行累积求和来计算。

  3. 归一化CDF:将CDF的值归一化到[0, 255]的范围内。这可以通过以下公式来实现:

    CDF_normalized = (CDF - min(CDF)) / (M * N - 1) * 255

    其中,MN 是图像的宽度和高度。

  4. 映射像素值:对于原始图像中的每个像素,将其亮度级别映射到归一化的CDF值。具体地,用归一化CDF值替换原始像素值。

  5. 生成均衡化后的图像:将所有像素的亮度级别替换后,生成均衡化后的图像。

下面是一个Python示例,演示如何使用OpenCV库进行直方图均衡化:

复制代码

pythonCopy code

import cv2 # 读取原始图像 image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE) # 计算直方图 hist = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积分布函数 cdf = hist.cumsum() # 归一化CDF cdf_normalized = cdf * 255 / cdf[-1] # 映射像素值 equalized_image = cdf_normalized[image] # 保存均衡化后的图像 cv2.imwrite('output.jpg', equalized_image)

相关推荐
Coder_Boy_4 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235864 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs4 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮4 小时前
AI 视觉连载2:灰度图
人工智能
yunfuuwqi5 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云5 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
人工智能培训5 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli75 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能