直方图学习

直方图均衡化(Histogram Equalization)是一种用于增强图像对比度的图像处理技术,通过重新分配图像的像素值,使图像中的亮度级别更加均匀,以改善图像的视觉质量。下面是进行直方图均衡化的一般步骤:

  1. 计算原始图像的直方图:首先,计算原始图像的灰度直方图,以了解不同亮度级别的像素数量分布。

  2. 计算累积分布函数(CDF):对于每个亮度级别,计算其累积分布函数(CDF),这是一个表示在该亮度级别以下像素数量累积的函数。CDF可以通过对灰度直方图进行累积求和来计算。

  3. 归一化CDF:将CDF的值归一化到[0, 255]的范围内。这可以通过以下公式来实现:

    CDF_normalized = (CDF - min(CDF)) / (M * N - 1) * 255

    其中,MN 是图像的宽度和高度。

  4. 映射像素值:对于原始图像中的每个像素,将其亮度级别映射到归一化的CDF值。具体地,用归一化CDF值替换原始像素值。

  5. 生成均衡化后的图像:将所有像素的亮度级别替换后,生成均衡化后的图像。

下面是一个Python示例,演示如何使用OpenCV库进行直方图均衡化:

复制代码

pythonCopy code

import cv2 # 读取原始图像 image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE) # 计算直方图 hist = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积分布函数 cdf = hist.cumsum() # 归一化CDF cdf_normalized = cdf * 255 / cdf[-1] # 映射像素值 equalized_image = cdf_normalized[image] # 保存均衡化后的图像 cv2.imwrite('output.jpg', equalized_image)

相关推荐
央链知播8 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训8 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
懷淰メ9 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹9 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55189 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora9 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大9 小时前
关于前馈神经网络
人工智能·深度学习·神经网络
2的n次方_9 小时前
从0到1打造专属数字人:魔珐星云SDK接入实战演示
人工智能·具身智能·魔珐星云
roman_日积跬步-终至千里9 小时前
【模式识别与机器学习】机器学习练习题集 - 答案与解析
人工智能·机器学习
爱思德学术9 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):KSEM 2026
人工智能·知识图谱·知识工程·知识科学