直方图学习

直方图均衡化(Histogram Equalization)是一种用于增强图像对比度的图像处理技术,通过重新分配图像的像素值,使图像中的亮度级别更加均匀,以改善图像的视觉质量。下面是进行直方图均衡化的一般步骤:

  1. 计算原始图像的直方图:首先,计算原始图像的灰度直方图,以了解不同亮度级别的像素数量分布。

  2. 计算累积分布函数(CDF):对于每个亮度级别,计算其累积分布函数(CDF),这是一个表示在该亮度级别以下像素数量累积的函数。CDF可以通过对灰度直方图进行累积求和来计算。

  3. 归一化CDF:将CDF的值归一化到[0, 255]的范围内。这可以通过以下公式来实现:

    CDF_normalized = (CDF - min(CDF)) / (M * N - 1) * 255

    其中,MN 是图像的宽度和高度。

  4. 映射像素值:对于原始图像中的每个像素,将其亮度级别映射到归一化的CDF值。具体地,用归一化CDF值替换原始像素值。

  5. 生成均衡化后的图像:将所有像素的亮度级别替换后,生成均衡化后的图像。

下面是一个Python示例,演示如何使用OpenCV库进行直方图均衡化:

复制代码

pythonCopy code

import cv2 # 读取原始图像 image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE) # 计算直方图 hist = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积分布函数 cdf = hist.cumsum() # 归一化CDF cdf_normalized = cdf * 255 / cdf[-1] # 映射像素值 equalized_image = cdf_normalized[image] # 保存均衡化后的图像 cv2.imwrite('output.jpg', equalized_image)

相关推荐
CNRio18 小时前
AI眼镜:从“增强现实“到“增强体验“的技术跃迁与产业机遇
人工智能·ar
围炉聊科技18 小时前
实测 Kandinsky 5.0 图编辑功能:与龙猫模型效果深度对比,结果出乎意料!
人工智能
golang学习记18 小时前
GPT-5.2 发布:不是小升级,是「智能跃迁」
人工智能
HitpointNetSuite18 小时前
云原生与 AI:NetSuite 如何塑造亚太中端市场
人工智能·云原生
Salt_072818 小时前
DAY 37 MLP 神经网络的训练
人工智能·python·深度学习·神经网络·机器学习
一水鉴天18 小时前
整体设计 定稿 之6 完整设计文档讨论及定稿 之3 整体设计原则(原型-过程-模块三阶联动体系)
前端·数据库·人工智能
Katecat9966318 小时前
背胶条分类识别:基于计算机视觉的修复状态差异检测与质量评估系统
计算机视觉·分类·数据挖掘
RPA机器人就选八爪鱼18 小时前
银行业流程自动化升级:RPA 机器人赋能金融数智转型
大数据·人工智能·机器人·自动化·rpa
创客匠人老蒋18 小时前
创客匠人:知识IP进阶之路,从“想做很多”到“只做一个爆品”
人工智能·创客匠人全球ip+ai高峰论坛·全球创始人ip+ai万人峰会
Winwoo18 小时前
AI Commit:拯救词穷,自动生成 Git Message
人工智能·程序员