直方图学习

直方图均衡化(Histogram Equalization)是一种用于增强图像对比度的图像处理技术,通过重新分配图像的像素值,使图像中的亮度级别更加均匀,以改善图像的视觉质量。下面是进行直方图均衡化的一般步骤:

  1. 计算原始图像的直方图:首先,计算原始图像的灰度直方图,以了解不同亮度级别的像素数量分布。

  2. 计算累积分布函数(CDF):对于每个亮度级别,计算其累积分布函数(CDF),这是一个表示在该亮度级别以下像素数量累积的函数。CDF可以通过对灰度直方图进行累积求和来计算。

  3. 归一化CDF:将CDF的值归一化到[0, 255]的范围内。这可以通过以下公式来实现:

    CDF_normalized = (CDF - min(CDF)) / (M * N - 1) * 255

    其中,MN 是图像的宽度和高度。

  4. 映射像素值:对于原始图像中的每个像素,将其亮度级别映射到归一化的CDF值。具体地,用归一化CDF值替换原始像素值。

  5. 生成均衡化后的图像:将所有像素的亮度级别替换后,生成均衡化后的图像。

下面是一个Python示例,演示如何使用OpenCV库进行直方图均衡化:

复制代码

pythonCopy code

import cv2 # 读取原始图像 image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE) # 计算直方图 hist = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积分布函数 cdf = hist.cumsum() # 归一化CDF cdf_normalized = cdf * 255 / cdf[-1] # 映射像素值 equalized_image = cdf_normalized[image] # 保存均衡化后的图像 cv2.imwrite('output.jpg', equalized_image)

相关推荐
极小狐4 分钟前
极狐GitLab 如何 cherry-pick 变更?
人工智能·git·机器学习·gitlab
沛沛老爹8 分钟前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
0x21117 分钟前
[论文阅读]ReAct: Synergizing Reasoning and Acting in Language Models
人工智能·语言模型·自然语言处理
何大春27 分钟前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
mucheni29 分钟前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence30 分钟前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理
猿饵块41 分钟前
opencv--图像变换
人工智能·opencv·计算机视觉
LucianaiB1 小时前
【金仓数据库征文】_AI 赋能数据库运维:金仓KES的智能化未来
运维·数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
jndingxin1 小时前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长1 小时前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习