【机器学习】正则化到底是什么?

先说结论:机器学习中的正则化主要解决模型过拟合问题。

如果模型出现了过拟合,一般会从两个方面去改善,一方面是训练数据,比如说增加训练数据量,另一方面则是从模型角度入手,比如,降低模型复杂度。

但无论是增加数据量还是降低模型复杂度,都是不容易做到的,这时正则化就是一个唾手可得选择,只要在损失函数中加入正则化项,往往就能得到一个不错的效果提升。

什么是过拟合?

如果模型在训练集上效果好,但在测试集上效果差,这时我们就怀疑模型出现了过拟合。

最左边的是欠拟合,模型过于简单,只能拟合简单的线性关系。

中间的代表刚好拟合,其拟合的是一个2次多项式:

最右边的图就是过拟合的例子,模型过于复杂,也就是说模型考虑的太多了,模型可能使用了与分类无关的特征,或者模型试图去拟合关于特征的M次多项式,最终导致过拟合。

什么是正则化?

以线性回归为例,正常情况下,损失函数是这个样子的:

加入正则化项后:

如果q等于1称为L1正则化,q等于2称为L2正则化。

为什么正则化能防止过拟合?

前面我们说过,降低模型复杂度可以防止过拟合,正则化本质上就是在降低模型复杂度,正则化项其实就是对损失函数达到最小值的最优解w进行了限制。

在SVM的推理过程中,我们接触了带约束的最优化问题,并且知道可以通过拉格朗日乘子法以及对偶问题将带等式约束以及不等式约束优化问题转换成不带约束的优化问题。 所以对于公式(2),可以等价为:

上面的公式可视化为:

上图,蓝色的圆是原始损失函数(1)的等高线,其中心点是最优解,棕色的代表正则化项,有了正则化项约束后,最优解只能在棕色的圆或者正方形内寻找,所以最优解只能是等高线与圆的切点或者与正方形顶点的交点。

那为什么与正则化项相交点的参数能防止过拟合呢?

先来看L1正则化,最优解w一定是在坐标轴上,也就是说w的某些维度一定是0,这就起到了参数稀疏化的作用。

(在神经网络中的Dropout机制不也是一种正则化思想嘛!)

既然参数的某些元素为0,那么就可能把模型拟合的M次多项式高次项或者组合项去掉转换为2次多项式了。

而L2正则化虽然没有使W中的某些元素为0,但却使w的每个元素都很小,也就是限制了某些高次项或者复杂组合项的作用。 所以无论是哪种正则化,都是在约束模型的复杂度。

相关推荐
shangjian00714 分钟前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错17 分钟前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰21 分钟前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
丝斯20111 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技5 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329725 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔6 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案7 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信7 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博8 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能