在opencv OpenCV中打开相机摄像头,用分水岭算法实时实现图像的分割与提取

python 复制代码
import cv2
import numpy as np

# 定义回调函数
def callback(x):
    pass

# 打开摄像头
cap = cv2.VideoCapture(0)

# 创建窗口和控件
cv2.namedWindow('image')
cv2.createTrackbar('threshold', 'image', 0, 255, callback)

# 初始化参数
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)
rect = (0, 0, 1, 1)

while True:
    # 获取当前帧
    ret, frame = cap.read()

    # 转换为灰度图像
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 获取阈值
    threshold = cv2.getTrackbarPos('threshold', 'image')

    # 进行前景和背景的分割
    mask = np.zeros(gray.shape, np.uint8)
    mask[gray >= threshold] = 1
    cv2.imshow('mask', mask)

    # 对分割后的图像进行分水岭处理
    markers = cv2.watershed(frame, mask)

    # 绘制分割结果
    frame[markers == -1] = [255, 0, 0]

    # 显示结果
    cv2.imshow('image', frame)

    # 按下ESC键退出程序
    if cv2.waitKey(1) == 27:
        break

# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()

cv2.VideoCapture()函数打开摄像头,然后创建一个新窗口并添加一个用于调整阈值的滑动条。在每一帧图像中,我们通过cv2.cvtColor()将其转换为灰度图像,然后根据阈值获取前景和背景的分割结果。接下来,我们将分割结果传递给cv2.watershed()函数进行分水岭处理,然后将分水岭处理后的分割结果绘制到原图像中。最后,我们使用cv2.imshow()显示结果,并在用户按下ESC键时退出程序。

相关推荐
卡洛斯(编程版40 分钟前
(1) 哈希表全思路-20天刷完Leetcode Hot 100计划
python·算法·leetcode
NAGNIP2 小时前
DeepSeekMoE 架构解析
算法
不喜欢学数学er2 小时前
算法第五十二天:图论part03(第十一章)
算法·深度优先·图论
养成系小王2 小时前
四大常用排序算法
数据结构·算法·排序算法
NAGNIP2 小时前
一文搞懂DeepSeek LLM
算法
已读不回1432 小时前
设计模式-策略模式
前端·算法·设计模式
CoovallyAIHub3 小时前
标注成本骤降,DINOv3炸裂发布!冻结 backbone 即拿即用,性能对标SOTA
深度学习·算法·计算机视觉
BB学长3 小时前
流固耦合|01流固耦合分类
人工智能·算法
汤永红3 小时前
week3-[分支嵌套]方阵
c++·算法·信睡奥赛
广州智造3 小时前
EPLAN教程:流体工程
开发语言·人工智能·python·算法·软件工程·软件构建