在opencv OpenCV中打开相机摄像头,用分水岭算法实时实现图像的分割与提取

python 复制代码
import cv2
import numpy as np

# 定义回调函数
def callback(x):
    pass

# 打开摄像头
cap = cv2.VideoCapture(0)

# 创建窗口和控件
cv2.namedWindow('image')
cv2.createTrackbar('threshold', 'image', 0, 255, callback)

# 初始化参数
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)
rect = (0, 0, 1, 1)

while True:
    # 获取当前帧
    ret, frame = cap.read()

    # 转换为灰度图像
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 获取阈值
    threshold = cv2.getTrackbarPos('threshold', 'image')

    # 进行前景和背景的分割
    mask = np.zeros(gray.shape, np.uint8)
    mask[gray >= threshold] = 1
    cv2.imshow('mask', mask)

    # 对分割后的图像进行分水岭处理
    markers = cv2.watershed(frame, mask)

    # 绘制分割结果
    frame[markers == -1] = [255, 0, 0]

    # 显示结果
    cv2.imshow('image', frame)

    # 按下ESC键退出程序
    if cv2.waitKey(1) == 27:
        break

# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()

cv2.VideoCapture()函数打开摄像头,然后创建一个新窗口并添加一个用于调整阈值的滑动条。在每一帧图像中,我们通过cv2.cvtColor()将其转换为灰度图像,然后根据阈值获取前景和背景的分割结果。接下来,我们将分割结果传递给cv2.watershed()函数进行分水岭处理,然后将分水岭处理后的分割结果绘制到原图像中。最后,我们使用cv2.imshow()显示结果,并在用户按下ESC键时退出程序。

相关推荐
IT猿手2 小时前
基于强化学习 Q-learning 算法求解城市场景下无人机三维路径规划研究,提供完整MATLAB代码
神经网络·算法·matlab·人机交互·无人机·强化学习·无人机三维路径规划
万能程序员-传康Kk5 小时前
旅游推荐数据分析可视化系统算法
算法·数据分析·旅游
PXM的算法星球5 小时前
【并发编程基石】CAS无锁算法详解:原理、实现与应用场景
算法
ll7788115 小时前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
烨然若神人~5 小时前
算法第十七天|654. 最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树
算法
爱coding的橙子5 小时前
每日算法刷题Day2 5.10:leetcode数组1道题3种解法,用时40min
算法·leetcode
程序媛小盐6 小时前
贪心算法:最小生成树
算法·贪心算法·图论
Panesle6 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
多多*7 小时前
算法竞赛相关 Java 二分模版
java·开发语言·数据结构·数据库·sql·算法·oracle
逐光沧海7 小时前
数据结构基础--蓝桥杯备考
数据结构·c++·算法·蓝桥杯