机器学习——逻辑回归

目录

一、分类问题

监督学习的最主要类型

二分类

多分类

二、Sigmoid函数

三、逻辑回归求解

代价函数推导过程(极大似然估计):

交叉熵损失函数

逻辑回归的代价函数

[代价函数最小化------梯度下降: ​编辑](#代价函数最小化——梯度下降: 编辑)

正则化

四、逻辑回归代码实现

[Sigmoid 函数](#Sigmoid 函数)

代价函数

[​编辑 正则化](#编辑 正则化)


一、分类问题

监督学习的最主要类型

分类(Classification):

  • 身高1.85m,体重100kg的男人穿什么尺码的T恤?
  • 根据肿瘤的体积、患者的年龄来判断良性或恶性?
  • 根据用户的年龄、职业、存款数量来判断信用卡是否会违约?

输入变量可以是离散的,也可以是连续的。

二分类

们先从用蓝色圆形数据定义为类型1,其余数据为类型2; 只需要分类1次 步骤:①->②

多分类

我们先定义其中一类为类型1(正类),其余数据为负类(rest); 接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有n类,那就需要分类n-1次 步骤:①->②->③->......

二、Sigmoid函数

σ(z)代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function)

合起来,我们得到逻辑回归模型的假设函数:

当σ(z)大于等于0.5时,预测 y =1

当σ(z)小于0.5时,预测 y =0

三、逻辑回归求解

逻辑回归模型的假设函数:

逻辑函数(logistic function)公式为:

二分类相当于一个概率模型:

合起来:

代价函数推导过程(极大似然估计):

似然函数为:

似然函数两边取对数,则连乘号变成了连加号:

代价函数为:

交叉熵损失函数

代价函数就是对m个样本的损失函数求和然后除以m:

逻辑回归的代价函数

代价函数最小化------梯度下降:

正则化

正则化:目的是为了防止过拟合

当 λ 的值开始上升时,降低了方差。

四、逻辑回归代码实现

Sigmoid 函数

代价函数

正则化

相关推荐
皮肤科大白27 分钟前
如何在data.table中处理缺失值
学习·算法·机器学习
有Li27 分钟前
基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用
人工智能·深度学习
熙曦Sakura32 分钟前
【深度学习】微积分
人工智能·深度学习
qq_2546744135 分钟前
如何用概率论解决真实问题?用随机变量去建模,最大的难题是相关关系
人工智能·神经网络
汤姆和佩琦42 分钟前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn
远洋录44 分钟前
AI Agent的记忆系统实现:从短期对话到长期知识
人工智能·ai·ai agent
HyperAI超神经1 小时前
【TVM教程】为 ARM CPU 自动调优卷积网络
arm开发·人工智能·python·深度学习·机器学习·tvm·编译器
Kai HVZ1 小时前
《OpenCV》——图像透视转换
人工智能·opencv·计算机视觉
IT古董1 小时前
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
人工智能·深度学习·cnn
Luzem03191 小时前
使用scikit-learn中的KNN包实现对鸢尾花数据集的预测
人工智能·深度学习·机器学习