机器学习——逻辑回归

目录

一、分类问题

监督学习的最主要类型

二分类

多分类

二、Sigmoid函数

三、逻辑回归求解

代价函数推导过程(极大似然估计):

交叉熵损失函数

逻辑回归的代价函数

[代价函数最小化------梯度下降: ​编辑](#代价函数最小化——梯度下降: 编辑)

正则化

四、逻辑回归代码实现

[Sigmoid 函数](#Sigmoid 函数)

代价函数

[​编辑 正则化](#编辑 正则化)


一、分类问题

监督学习的最主要类型

分类(Classification):

  • 身高1.85m,体重100kg的男人穿什么尺码的T恤?
  • 根据肿瘤的体积、患者的年龄来判断良性或恶性?
  • 根据用户的年龄、职业、存款数量来判断信用卡是否会违约?

输入变量可以是离散的,也可以是连续的。

二分类

们先从用蓝色圆形数据定义为类型1,其余数据为类型2; 只需要分类1次 步骤:①->②

多分类

我们先定义其中一类为类型1(正类),其余数据为负类(rest); 接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有n类,那就需要分类n-1次 步骤:①->②->③->......

二、Sigmoid函数

σ(z)代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function)

合起来,我们得到逻辑回归模型的假设函数:

当σ(z)大于等于0.5时,预测 y =1

当σ(z)小于0.5时,预测 y =0

三、逻辑回归求解

逻辑回归模型的假设函数:

逻辑函数(logistic function)公式为:

二分类相当于一个概率模型:

合起来:

代价函数推导过程(极大似然估计):

似然函数为:

似然函数两边取对数,则连乘号变成了连加号:

代价函数为:

交叉熵损失函数

代价函数就是对m个样本的损失函数求和然后除以m:

逻辑回归的代价函数

代价函数最小化------梯度下降:

正则化

正则化:目的是为了防止过拟合

当 λ 的值开始上升时,降低了方差。

四、逻辑回归代码实现

Sigmoid 函数

代价函数

正则化

相关推荐
互联网之声17 分钟前
崔传波教授:以科技与人文之光,点亮近视患者的清晰视界‌
人工智能
lily363926046a17 分钟前
智联未来 点赋科技
大数据·人工智能
聚客AI19 分钟前
🍬传统工程师转型:智能体架构师的技能图谱
人工智能·agent·mcp
lihuayong20 分钟前
AI赋能金融研报自动化生成:智能体系统架构与实现
人工智能·金融研报自动化
架构师日志21 分钟前
Google开源框架LangExtract实践(1)——Docker部署,免费、低碳、无需GPU、多种大模型灵活切换,绝对可用!
人工智能
嘀咕博客22 分钟前
MiniMax - 稀宇科技推出的AI智能助手
人工智能·科技·ai工具
九章云极AladdinEdu26 分钟前
深度学习优化器进化史:从SGD到AdamW的原理与选择
linux·服务器·开发语言·网络·人工智能·深度学习·gpu算力
dlraba80232 分钟前
Python 实战:票据图像自动矫正技术拆解与落地教程
人工智能·opencv·计算机视觉
过河卒_zh15667661 小时前
9.13AI简报丨哈佛医学院开源AI模型,Genspark推出AI浏览器
人工智能·算法·microsoft·aigc·算法备案·生成合成类算法备案