机器学习——逻辑回归

目录

一、分类问题

监督学习的最主要类型

二分类

多分类

二、Sigmoid函数

三、逻辑回归求解

代价函数推导过程(极大似然估计):

交叉熵损失函数

逻辑回归的代价函数

[代价函数最小化------梯度下降: ​编辑](#代价函数最小化——梯度下降: 编辑)

正则化

四、逻辑回归代码实现

[Sigmoid 函数](#Sigmoid 函数)

代价函数

[​编辑 正则化](#编辑 正则化)


一、分类问题

监督学习的最主要类型

分类(Classification):

  • 身高1.85m,体重100kg的男人穿什么尺码的T恤?
  • 根据肿瘤的体积、患者的年龄来判断良性或恶性?
  • 根据用户的年龄、职业、存款数量来判断信用卡是否会违约?

输入变量可以是离散的,也可以是连续的。

二分类

们先从用蓝色圆形数据定义为类型1,其余数据为类型2; 只需要分类1次 步骤:①->②

多分类

我们先定义其中一类为类型1(正类),其余数据为负类(rest); 接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有n类,那就需要分类n-1次 步骤:①->②->③->......

二、Sigmoid函数

σ(z)代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function)

合起来,我们得到逻辑回归模型的假设函数:

当σ(z)大于等于0.5时,预测 y =1

当σ(z)小于0.5时,预测 y =0

三、逻辑回归求解

逻辑回归模型的假设函数:

逻辑函数(logistic function)公式为:

二分类相当于一个概率模型:

合起来:

代价函数推导过程(极大似然估计):

似然函数为:

似然函数两边取对数,则连乘号变成了连加号:

代价函数为:

交叉熵损失函数

代价函数就是对m个样本的损失函数求和然后除以m:

逻辑回归的代价函数

代价函数最小化------梯度下降:

正则化

正则化:目的是为了防止过拟合

当 λ 的值开始上升时,降低了方差。

四、逻辑回归代码实现

Sigmoid 函数

代价函数

正则化

相关推荐
后端小肥肠6 分钟前
躺赚必备!RPA+Coze+豆包:公众号自动发文,AI率0%亲测有效(附AI率0%提示词)
人工智能·aigc·coze
摘星编程17 分钟前
CloudBase AI ToolKit实战:从0到1开发一个智能医疗网站
人工智能·腾讯云·ai代码远征季#h5应用·ai医疗应用·cloudbase开发
锅挤22 分钟前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
一支烟一朵花26 分钟前
630,百度文心大模型4.5系列开源!真香
人工智能·百度·开源·文心一言
网安INF28 分钟前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
AIbase20241 小时前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
喜欢吃豆2 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion2 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径
zskj_zhyl2 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网