9.spark自适应查询-AQE之动态调整Join策略

目录

概述

broadcast hash join 类似于 Spark 共享变量中的广播变量,Spark join 如果能采取这种策略,那join 的性能是最好的

  • 自适应查询AQE(Adaptive Query Execution)
    • 动态调整Join策略
      • 原理
      • 实战
    • 动态优化倾斜的 Join
      • 原理
      • 默认环境配置
      • 修改配置

动态调整Join策略

实际上在生产中,特别是工厂中的局限性,表设计的时候,不是那么合理,导致这这种情况,很少见,很难被调整。

原理

AQE 可以将 sort-merge join 转成 broadcast hash join ,条件是当join 表小于自适应 broadcast hash join 的阀值。

开启了自适应查询执行机制之后,可以在运行时根据最精确的数据指标重新规划join策略,实现动态调整join策略。

看以下图:

后续测试过程中,可以看 spark sql 的执行图。

属性名称 默认值 解释 版本
spark.sql.adaptive.localShuffleReader.enabled true 当值为true,且spark.sql.adaptive.enabled也为true时,Spark尝试不需要shuffle分区时,使用本地的shuffle读取器读取shuffle数据,例如:在将 sort-merge 转换成 broadcast-hash join 之后 3.0.0
spark.sql.adaptive.autoBroadcastJoinThreshold (none) 为表配置最大的字节数,能优化成 broadcast join,通过设置此配置为-1,可以禁用 broadcast ,默认值与 spark.sql.autoBroadcastJoinThreshold 相同 3.2.0
spark.sql.autoBroadcastJoinThreshold 10MB 同上 1.1.0

当所有的 shuffle partitions 都小于阀值, AQE 将 sort-merge join 转成 shuffled hash join ;最大阀值配置:spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold

属性名称 默认值 解释 版本
spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold 0 为每个分区配置最大的字节数,能够构建 local hash map,如果这个值不小于 spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold并所有的分区不大于这个配置,join选择更倾向于使用 shuffled hash join,而不是 sort merge join 3.2.0

实战

执行的 sql

sql 复制代码
select count(*) from xx where dt ='2023-06-30' and workorder='011002118525' ;
## 同样的表相连
select * from (select * from xx  where dt ='2023-06-30' and workorder='011002118525') as a
left join  xx as b  on b.dt ='2023-06-30' and b.workorder='011002118525' and  a.id = b.id  ;

由上图,三百多万的数据,肯定超过10MB了,所以是 sort merge join

修改 sql 如下:

sql 复制代码
select	* from (select id from xx where dt = '2023-06-30' and workorder='011002118525' ) as a join xx as b on a.id = b.id and b.dt = '2023-06-30' and b.unitid = 'H8TGWJ035ZY0000431';

动态优化倾斜的 Join

原理

数据倾斜严重,将严重影响 join 查询的性能。该功能动态处理在 sort-merge join 倾斜数据时,将其分为大小差不多的任务。当同是启用 spark.sql.adaptive.enabledspark.sql.adaptive.skewJoin.enabled 时,动态优化倾斜 这个功能将生效。

属性名称 默认值 解释 版本
spark.sql.adaptive.skewJoin.enabled true 当同是启用 spark.sql.adaptive.enabled动态优化倾斜 这个功能将生效 3.0.0
spark.sql.adaptive.skewJoin.skewedPartitionFactor 5 如果分区的大小大于此因子乘以分区大小的中值,并且也大于spark.sql.adaptive.skewJoin.strakedPartitionThresholdInBytes,则该分区被视为偏斜。 3.2.0
spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes 256MB 如果分区的字节大小大于此阈值,并且也大于spark.sql.adaptive.skewJoin.strakedPartitionFactor乘以分区大小中值,则该分区被视为偏斜。理想情况下,此配置应设置为大于spark.sql.adaptive.advisoryPartitionSizeInBytes 3.0.0

假设有两个表 t1t2,其中表t1中的P0分区里面的数据量明显大于其他分区,默认的执行情况是这样的,看这个图:

t1表中p0分区的数据比p1\p2\p3这几个分区的数据大很多,可以认为t1表中的数据出现了倾斜

当t1和t2表中p1、p2、p3这几个分区在join的时候基本上是不会出现数据倾斜的,因为这些分区的数据相对适中。但是P0分区在进行join的时候就会出现数据倾斜了,这样会导致 join 的时间过长

动态优化倾斜的 join 机制会把P0分区切分成两个子分区P0-1和P0-2,并将每个子分区关联到表t2的对应分区P0,看这个图:

t2表中的P0分区会复制出来两份相同的数据,和t1表中切分出来的P0分区的数据进行 join 关联。

这样相当于就把t1表中倾斜的分区拆分打散了,最终在 join 的时候就不会产生数据倾斜了。

实战

todo: 以后如果遇到,再补充上

相关推荐
Edingbrugh.南空44 分钟前
Flink Postgres CDC 环境配置与验证
大数据·flink
isNotNullX1 小时前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
小袁拒绝摆烂1 小时前
ElasticSearch快速入门-1
大数据·elasticsearch·搜索引擎
点控云2 小时前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心
zkmall4 小时前
企业电商解决方案哪家好?ZKmall模块商城全渠道支持 + 定制化服务更省心
大数据·运维·重构·架构·开源
随缘而动,随遇而安8 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
GISer_Jing9 小时前
Git协作开发:feature分支、拉取最新并合并
大数据·git·elasticsearch
IT_102410 小时前
Spring Boot项目开发实战销售管理系统——系统设计!
大数据·spring boot·后端
一只鹿鹿鹿11 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
聚铭网络12 小时前
案例精选 | 某省级税务局AI大数据日志审计中台应用实践
大数据·人工智能·web安全