Milvus Cloud——LLM Agent 现阶段出现的问题

LLM Agent 现阶段出现的问题

由于一些 LLM(GPT-4)带来了惊人的自然语言理解和生成能力,并且能处理非常复杂的任务,一度让 LLM Agent 成为满足人们对科幻电影所有憧憬的最终答案。但是在实际使用过程中,大家逐渐发现了通往通用人工智能的道路并不是一蹴而就的,目前 Agent 很容易在一些情况下失败:

  • Agent 会在处理某一个任务上陷入一个循环

  • prompt 越来越长,最终甚至超出最大内容长度

  • 记忆模块的策略没有给 LLM 某些关键的信息而导致执行失败

  • LLM 由于幻觉问题错误使用工具,或者让事情半途而废

上述问题随着大家对于 Agent 的了解开始浮出水面,这些问题一部分需要 LLM 自身来解决,另一部分也需要 Agent 框架来进行解决,通用的 Agent 仍需进一步打磨。

相关推荐
海边夕阳20063 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI3 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_4 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭4 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT4 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"4 小时前
专项智能练习(课程类型)
人工智能
2501_918126915 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home5 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊6 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek