Milvus Cloud——LLM Agent 现阶段出现的问题

LLM Agent 现阶段出现的问题

由于一些 LLM(GPT-4)带来了惊人的自然语言理解和生成能力,并且能处理非常复杂的任务,一度让 LLM Agent 成为满足人们对科幻电影所有憧憬的最终答案。但是在实际使用过程中,大家逐渐发现了通往通用人工智能的道路并不是一蹴而就的,目前 Agent 很容易在一些情况下失败:

  • Agent 会在处理某一个任务上陷入一个循环

  • prompt 越来越长,最终甚至超出最大内容长度

  • 记忆模块的策略没有给 LLM 某些关键的信息而导致执行失败

  • LLM 由于幻觉问题错误使用工具,或者让事情半途而废

上述问题随着大家对于 Agent 的了解开始浮出水面,这些问题一部分需要 LLM 自身来解决,另一部分也需要 Agent 框架来进行解决,通用的 Agent 仍需进一步打磨。

相关推荐
kooboo china.18 分钟前
Tailwind CSS 实战:基于 Kooboo 构建 AI 对话框页面(八):异步处理逻辑详解
前端·css·人工智能·编辑器·html·交互
nenchoumi311924 分钟前
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
ue5·机器人·无人机
newxtc31 分钟前
【JJ斗地主-注册安全分析报告】
开发语言·javascript·人工智能·安全
黑码哥38 分钟前
Copilot for Xcode (iOS的 AI辅助编程)
人工智能·copilot·ai编程·xcode·ai辅助编程
深科文库38 分钟前
构建 MCP 服务器:第 2 部分 — 使用资源模板扩展资源
人工智能·chatgpt·llama
程序猿小D41 分钟前
第22节 Node.js JXcore 打包
开发语言·人工智能·vscode·node.js·c#
ykjhr_3d1 小时前
AI 导游:开启智能旅游新时代
人工智能·旅游
jndingxin1 小时前
OpenCV CUDA模块光流计算-----实现Farneback光流算法的类cv::cuda::FarnebackOpticalFlow
人工智能·opencv·算法
marteker1 小时前
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
人工智能
码上地球2 小时前
卷积神经网络设计指南:从理论到实践的经验总结
人工智能·深度学习·cnn