卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
LaughingZhu4 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员4 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机4 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
geovindu4 小时前
python: Memento Pattern
开发语言·python·设计模式·备忘录模式
byzh_rc4 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客4 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路4 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客4 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
lbb 小魔仙4 小时前
【Java】Java 实战项目:手把手教你写一个电商订单系统
android·java·python
一个天蝎座 白勺 程序猿5 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai