卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
七宝大爷几秒前
CUDA与cuDNN:深度学习加速库
人工智能·深度学习·cuda·cudnn
程序员杰哥1 分钟前
接口测试之文件上传
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
2401_841495642 分钟前
【自然语言处理】单字与双字字频统计算法设计
人工智能·python·算法·自然语言处理·单字·双字·字频统计
一水鉴天3 分钟前
整体设计 定稿 之29 整体设计表述总表 的专用读表工具-自然语言处理(codybuddy)
人工智能·自然语言处理·重构
fegggye4 分钟前
创建一个rust写的python库[signatures和错误处理]
开发语言·python·rust
JoannaJuanCV14 分钟前
自动驾驶—CARLA仿真(13)dynamic_weather demo
人工智能·机器学习·自动驾驶·carla
拉姆哥的小屋15 分钟前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
北京耐用通信15 分钟前
工程师实战:如何以最小成本,耐达讯自动化无缝连接Profinet转DeviceNet网关
人工智能·物联网·网络协议·自动化·信息与通信
_codemonster15 分钟前
自然语言处理容易混淆知识点(三)大模型中的参数
人工智能·自然语言处理
Elwin Wong16 分钟前
本地运行LangChain Agent用于开发调试
人工智能·langchain·大模型·llm·agent·codingagent