卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
Data_agent41 分钟前
学术爬虫实战:构建知网论文关键词共现网络的技术指南
python·算法
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记前四张问答(7题)
人工智能·笔记·学习
龙腾亚太1 小时前
大模型十大高频问题之五:如何低成本部署大模型?有哪些开源框架推荐?
人工智能·langchain·llm·智能体·大模型培训
信息快讯1 小时前
【人工智能与数据驱动方法加速金属材料设计与应用】
人工智能·材料工程·金属材料·结构材料设计
c#上位机2 小时前
halcon图像增强——emphasize
图像处理·人工智能·计算机视觉·c#·上位机·halcon
老蒋新思维2 小时前
创客匠人峰会洞察:私域 AI 化重塑知识变现 —— 创始人 IP 的私域增长新引擎
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
知行力2 小时前
【GitHub每日速递 20251209】Next.js融合AI,让draw.io图表创建、修改、可视化全靠自然语言!
javascript·人工智能·github
冷yan~2 小时前
OpenAI Codex CLI 完全指南:AI 编程助手的终端革命
人工智能·ai·ai编程
菜鸟‍2 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习