卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
___波子 Pro Max.9 分钟前
Python字典操作与应用详解
python
方见华Richard11 分钟前
自指系统的安全本体论:论内生安全性的哲学基础与形式化路径
人工智能·经验分享·交互·学习方法·原型模式
Kratzdisteln12 分钟前
【1902】process_assignment_pdf()
大数据·人工智能·pdf
sg_knight12 分钟前
抽象工厂模式(Abstract Factory)
java·python·设计模式·抽象工厂模式·开发
大雷神17 分钟前
HarmonyOS智慧农业管理应用开发教程--高高种地--第16篇:HarmonyOS AI能力概述与集成
人工智能·华为·harmonyos
Hugging Face17 分钟前
DeepSeek之后:中国开源人工智能生态的架构选择
人工智能·开源
wxl78122721 分钟前
2026年人工智能发展趋势:效率重构、生态协同与规范前行
大数据·人工智能·重构
沃达德软件22 分钟前
重点人员动态管控系统解析
数据仓库·人工智能·hive·hadoop·redis·hbase
2501_9481201531 分钟前
基于神经网络的音乐情感分析器
人工智能·深度学习·神经网络
九河云40 分钟前
数字韧性时代,华为云CBR为业务连续性注入“免疫基因”
大数据·人工智能·安全·机器学习·华为云