卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
毕设源码-钟学长17 小时前
【开题答辩全过程】以 基于Python的车辆管理系统为例,包含答辩的问题和答案
开发语言·python
Akamai中国17 小时前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·云服务·云存储
CCPC不拿奖不改名17 小时前
数据处理与分析:数据可视化的面试习题
开发语言·python·信息可视化·面试·职场和发展
液态不合群17 小时前
线程池和高并发
开发语言·python
雨大王51217 小时前
汽车AI智能体矩阵:驱动行业智能化变革的新范式
人工智能·汽车
SmartRadio18 小时前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora
旦莫18 小时前
Pytest教程:Pytest与主流测试框架对比
人工智能·python·pytest
●VON18 小时前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
数据大魔方18 小时前
【期货量化实战】螺纹钢量化交易指南:品种特性与策略实战(TqSdk完整方案)
python·算法·github·程序员创富·期货程序化·期货量化·交易策略实战