卷积神经网络中参数量的计算原理及方法

python 复制代码
手动计算参数量:
1. 卷积层参数计算方法:
参数量计算公式 = 卷积核宽度 * 卷积核高度 * 输入层通道数 * 输出层通道数 + bias(输出层通道数)
注意:池化层没有参数(只是在已知数据区域里求个最大值)

输入层通道数就是上层的卷积核数量
输出层通道数等于卷积核个数:输入层通道数经过32个卷积核后变成32个通道

2. 全连接层参计算方法:
根据x*w+b和矩阵乘法推断w的形状
参数量 = w的参数量 + b的参数量

举例:
(bs,1152) * (1152,512)
w的参数量 = 上一层的1152 * 这层的神经元个数512
b的参数量就是神经元的个数512
总参数量 = 1152*512+512=1153*512
python 复制代码
# 卷积层
print(3*3 * 1 * 32 + 32)
print(3*3 * 32 * 32 + 32)
print(3*3 * 32 * 64 + 64)
print(3*3 * 64 * 64 + 64)
print(3*3 * 64 * 128 + 128)
print(3*3 * 128 * 128 + 128)

# 卷积核展平
print(3*3*128)

# 全连接层 (神经网络)
print(1152*512 + 512)
print(512*256 + 256)
print(256*10 + 10)
相关推荐
普通网友4 分钟前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
白帽子黑客罗哥14 分钟前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
捕风捉你25 分钟前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤26 分钟前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI30 分钟前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
极新41 分钟前
智面玄赏联合创始人李男:人工智能赋能招聘行业——从效率革新到平台经济重构|2025极新AIGC峰会演讲实录
人工智能·百度
乾元1 小时前
ISP 级别的异常洪泛检测与防护——大流量事件的 AI 自动识别与响应工程
运维·网络·人工智能·安全·web安全·架构
机器之心1 小时前
多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案
人工智能·openai
linhx1 小时前
【AIGC工作流】解构AI短剧生产管线:从手动调用DeepSeek+MJ,到Agent一站式自动化的演进
人工智能·自动化·aigc
于越海1 小时前
材料电子理论核心四个基本模型的python编程学习
开发语言·笔记·python·学习·学习方法