获取深度学习模型权重或者某一层特征图输出的方法:基于pytorch

获取深度学习模型权重或者某一层特征图输出的方法

文章目录


前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了获取深度学习模型权重或者某一层特征输出的方法,包括使用hook机制。

特征图输出就是某个图像(序列)经过该层时的输出


以下是本篇文章正文内容

一、获取深度学习模型权重

这里以画卷积核可视化为例:

获取第一个卷积层的权重

所在行代码即为获取权重

python 复制代码
import os
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import models
from torchvision import transforms


def visualize_conv_filters():
    # 设置GPU设备
    torch.cuda.set_device(2)

    model = models.resnet50(pretrained=True)
    model = model.cuda()  # 将模型移动到GPU2上

    # 获取第一个卷积层的权重
    conv1_weights = model.conv1.weight.data.cpu().numpy()
    # 调整权重形状,从 [out_channels, in_channels, kernel_size, kernel_size] 变为 [out_channels, kernel_size, kernel_size, in_channels]
    conv1_weights = np.transpose(conv1_weights, (0, 2, 3, 1))

    # 可视化卷积核
    fig, axes = plt.subplots(nrows=8, ncols=8, figsize=(12, 12))
    for i, ax in enumerate(axes.flat):
        ax.imshow(conv1_weights[i])
        ax.axis('off')

    plt.show()


if __name__ == '__main__':
    visualize_conv_filters()

二、获取某一层特征图输出

方法一:使用IntermediateLayerGetter类

python 复制代码
# 返回输出结果
import random

import cv2
import torchvision
import torch
from matplotlib import pyplot as plt
import numpy as np
from torchvision import transforms
from torchvision import models


# 定义函数,随机从0-end的一个序列中抽取size个不同的数
def random_num(size, end):
    range_ls = [i for i in range(end)]
    num_ls = []
    for i in range(size):
        num = random.choice(range_ls)
        range_ls.remove(num)
        num_ls.append(num)
    return num_ls


path = "img_1.png"
transformss = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Resize((224, 224)),
     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

# 注意如果有中文路径需要先解码,最好不要用中文
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 转换维度
img = transformss(img).unsqueeze(0)

model = models.resnet50(pretrained=True)
new_model = torchvision.models._utils.IntermediateLayerGetter(model, {'layer1': '1', 'layer2': '2', "layer3": "3"})
out = new_model(img)

tensor_ls = [(k, v) for k, v in out.items()]

# 这里选取layer2的输出画特征图
v = tensor_ls[1][1]

# 选择目标卷积层
target_layer = model.layer2[2]
"""
如果要选layer3的输出特征图只需把第一个索引值改为2,即:
v=tensor_ls[2][1]
只需把第一个索引更换为需要输出的特征层对应的位置索引即可
"""
# 取消Tensor的梯度并转成三维tensor,否则无法绘图
v = v.data.squeeze(0)

print(v.shape)  # torch.Size([512, 28, 28])

# 随机选取25个通道的特征图
channel_num = random_num(25, v.shape[0])
plt.figure(figsize=(10, 10))
for index, channel in enumerate(channel_num):
    ax = plt.subplot(5, 5, index + 1, )
    plt.imshow(v[channel, :, :])
plt.savefig("./img/feature.jpg", dpi=300)

方法二:使用hook机制(推荐)

如下代码所示:

python 复制代码
# 返回输出结果
import random

import cv2
import torchvision
import torch
from matplotlib import pyplot as plt
import numpy as np
from torchvision import transforms
from torchvision import models


# 定义函数,随机从0-end的一个序列中抽取size个不同的数
def random_num(size, end):
    range_ls = [i for i in range(end)]
    num_ls = []
    for i in range(size):
        num = random.choice(range_ls)
        range_ls.remove(num)
        num_ls.append(num)
    return num_ls


path = "img_1.png"
transformss = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Resize((224, 224)),
     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

# 注意如果有中文路径需要先解码,最好不要用中文
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 转换维度
img = transformss(img).unsqueeze(0)

model = models.resnet50(pretrained=True)

# 选择目标层
target_layer = model.layer2[2]
# 注册钩子函数,用于获取目标卷积层的输出
outputs = []
def hook(module, input, output):
    outputs.append(output)

hook_handle = target_layer.register_forward_hook(hook)

_ = model(img)

v = outputs[-1]

"""
如果要选layer3的输出特征图只需把第一个索引值改为2,即:
v=tensor_ls[2][1]
只需把第一个索引更换为需要输出的特征层对应的位置索引即可
"""
# 取消Tensor的梯度并转成三维tensor,否则无法绘图
v = v.data.squeeze(0)

print(v.shape)  # torch.Size([512, 28, 28])

# 随机选取25个通道的特征图
channel_num = random_num(25, v.shape[0])
plt.figure(figsize=(10, 10))
for index, channel in enumerate(channel_num):
    ax = plt.subplot(5, 5, index + 1, )
    plt.imshow(v[channel, :, :])
plt.savefig("./img/feature2.jpg", dpi=300)

总结

以上就是今天要讲的内容

相关推荐
岁月宁静2 分钟前
图像生成接口的工程化设计与落地实践:封装豆包图像生成模型 Seedream 4.0 API
前端·人工智能·node.js
万岳科技程序员小金23 分钟前
多商户商城APP源码开发的未来方向:云原生、电商中台与智能客服
人工智能·云原生·开源·软件开发·app开发·多商户商城系统源码·多商户商城app开发
蓝色 - Lanse24 分钟前
模型推理如何利用非前缀缓存
人工智能·缓存
CoookeCola27 分钟前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
CoovallyAIHub28 分钟前
视觉语言模型(VLM)深度解析:如何用它来处理文档?
深度学习·算法·计算机视觉
火星资讯41 分钟前
多形态机器人协同发力优艾智合引领核电运维智能化升级
人工智能
qq_4203620343 分钟前
AI在前端工作中的应用
前端·人工智能·sse
CoovallyAIHub1 小时前
估值百亿独角兽创始人硕士论文曝光!宇树科技王兴兴的“性价比”思维10年前就已注定
深度学习·算法·计算机视觉
亚马逊云开发者1 小时前
Agentic AI基础设施实践经验系列(一):Agent应用开发与落地实践思考
人工智能
6v6-博客1 小时前
【效率工具】EXCEL批注提取工具
人工智能