在PyTorch中使用CUDA, pytorch与cuda不同版本对应安装指南,查看CUDA版本,安装对应版本pytorch

目录

[1 查看本机CUDA版本](#1 查看本机CUDA版本)

[2 查看对应CUDA的对应pytorch版本安装](#2 查看对应CUDA的对应pytorch版本安装)

[3 用pip 安装](#3 用pip 安装)

[4 用conda安装](#4 用conda安装)

[5 验证安装](#5 验证安装)


在PyTorch中使用CUDA,根据你的具体环境和需求调整版本号,确保安装的PyTorch版本与你的CUDA版本兼容。

在PyTorch中使用CUDA,你需要确保正确安装了匹配你的GPU的CUDA Toolkit。以下是在PyTorch中使用CUDA的一般步骤:

  1. 检查CUDA支持: 首先,确保你的GPU支持CUDA。你可以在官方CUDA支持列表上查找你的GPU型号。或者直接命令行

  2. 安装CUDA Toolkit: 下载并安装与你的GPU型号匹配的CUDA Toolkit。你可以从NVIDIA官网下载。在安装期间,可以选择安装适用于你的系统的CUDNN库。

  3. 安装cuDNN(可选): cuDNN是NVIDIA的深度神经网络库,可以加速深度学习任务。在CUDNN下载页面下载适用于你的CUDA版本的cuDNN,并按照安装说明进行安装。

  4. 安装PyTorch: 选择合适的PyTorch版本并使用pip或conda进行安装。按下面步骤2执行。

如果电脑已经安装过CUDA Toolkit和cuDNN,则步骤如下:

1 查看本机CUDA版本

输入命令

复制代码
NVIDIA-SMI

如下,CUDA版本11.6

2 查看对应CUDA的对应pytorch版本安装

官网查看对应系统对应cuda版本对应pytorch版本的安装命令,链接如下

Previous PyTorch Versions | PyTorchAn open source machine learning framework that accelerates the path from research prototyping to production deployment.https://pytorch.org/get-started/previous-versions/如图:

(一般pip安装会比conda安装较高效)。

3 用pip 安装

本文安装 torch 1.13.0+cuda11.6 ,命令如下

复制代码
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

注意:

这个命令将安装PyTorch、torchvision和torchaudio,并指定CUDA版本为11.6(注意:PyTorch的版本和CUDA版本可能会更新,确保使用适用于你系统的版本)。

请注意,使用pip安装时,你需要确保你已经安装了正确版本的CUDA Toolkit。如果你的CUDA版本不是11.6,你可能需要在cu116部分做相应的调整,查看官网相应的版本匹配。

4 用conda安装

复制代码
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

5 验证安装

在Python中运行以下代码,确保pytorch安装成功。

复制代码
import torch
print(torch.__version__)

在Python中运行以下代码,确保PyTorch能够使用CUDA:

复制代码
import torch

# 检查CUDA是否可用
print(torch.cuda.is_available())

# 显示当前CUDA版本
print(torch.version.cuda)

如下:

如果输出为True,表示CUDA可用,并且输出将显示你安装的CUDA版本。


注意:请根据你的具体环境和需求调整版本号,确保安装的PyTorch版本与你的CUDA版本兼容。如果使用conda,你可以使用conda命令替代pip。注意,PyTorch版本和CUDA版本需要匹配,否则可能会导致不兼容的问题。

相关推荐
人工智能训练师19 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr82821 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡21 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成21 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃1 天前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)1 天前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao1 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383921 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI1 天前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿1 天前
机器学习|大模型为什么会出现"幻觉"?
人工智能