C# OpenCvSharp 基于直线检测的文本图像倾斜校正

效果

代码

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
 
namespace OpenCvSharp_基于直线检测的文本图像倾斜校正
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
 
        private void button1_Click(object sender, EventArgs e)
        {
            string path = "1.jpg";
 
            pictureBox1.Image = new Bitmap(path);
            Mat mat = new Mat(path);
 
            Mat gray = new Mat(path, ImreadModes.Grayscale);
 
            Mat binary = new Mat();
            Cv2.Threshold(gray, binary, 50, 255, ThresholdTypes.BinaryInv);
 
            Mat element = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(7, 1));
 
            Mat dilation = new Mat();
            Cv2.Dilate(binary, dilation, element);
 
            Mat cannyDst = new Mat();
            Cv2.Canny(dilation, cannyDst, 150, 200);
 
            Mat houghDst = new Mat();
            mat.CopyTo(houghDst);
 
            LineSegmentPolar[] lineing = Cv2.HoughLines(cannyDst, 1, Cv2.PI / 180, 110, 0, 0);
            Scalar color = new Scalar(0, 255, 255);
 
            double meanAngle = 0.0;
            int numCnt = 0;
 
            for (int i = 0; i < lineing.Length; i++)
            {
                double rho = lineing[i].Rho;//线长
                double theta = lineing[i].Theta;//角度
 
                OpenCvSharp.Point pt1 = new OpenCvSharp.Point();
                OpenCvSharp.Point pt2 = new OpenCvSharp.Point();
                double a = Math.Cos(theta);
                double b = Math.Sin(theta);
                double x0 = a * rho, y0 = b * rho;
 
                pt1.X = (int)Math.Round(x0 + 600 * (-b));
                pt1.Y = (int)Math.Round(y0 + 600 * a);
                pt2.X = (int)Math.Round(x0 - 600 * (-b));
                pt2.Y = (int)Math.Round(y0 - 600 * a);
 
                Cv2.Line(houghDst, pt1, pt2, color, 1, LineTypes.Link4);
 
                theta = theta * 180 / Cv2.PI - 90;
 
                meanAngle += theta;
                numCnt++;
            }
            //Cv2.ImShow("houghDst", houghDst);
 
            meanAngle /= numCnt;
            Point2f center = new Point2f(mat.Cols / 2.0f, mat.Rows / 2.0f);
 
            Mat warpDst = new Mat();
            Mat rot_mat = Cv2.GetRotationMatrix2D(center, meanAngle, 1.0);
            OpenCvSharp.Size dst_sz = new OpenCvSharp.Size(mat.Cols, mat.Rows);
 
            Cv2.WarpAffine(mat, warpDst, rot_mat, dst_sz);
 
            pictureBox2.Image = new Bitmap(warpDst.ToMemoryStream());
        }
    }
}

下载

Demo下载

相关推荐
zzlyx994 分钟前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域29 分钟前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售
HillVue1 小时前
AI,如何重构理解、匹配与决策?
人工智能·重构
skywalk81631 小时前
市面上哪款AI开源软件做ppt最好?
人工智能·powerpoint
小九九的爸爸1 小时前
我是如何让AI帮我还原设计稿的
前端·人工智能·ai编程
hanniuniu132 小时前
网络安全厂商F5推出AI Gateway,化解大模型应用风险
人工智能·web安全·gateway
IGP92 小时前
20250606-C#知识:委托和事件
开发语言·c#
Iamccc13_2 小时前
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
人工智能·数据分析·自动化
蹦蹦跳跳真可爱5892 小时前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪