C# OpenCvSharp 基于直线检测的文本图像倾斜校正

效果

代码

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
 
namespace OpenCvSharp_基于直线检测的文本图像倾斜校正
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
 
        private void button1_Click(object sender, EventArgs e)
        {
            string path = "1.jpg";
 
            pictureBox1.Image = new Bitmap(path);
            Mat mat = new Mat(path);
 
            Mat gray = new Mat(path, ImreadModes.Grayscale);
 
            Mat binary = new Mat();
            Cv2.Threshold(gray, binary, 50, 255, ThresholdTypes.BinaryInv);
 
            Mat element = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(7, 1));
 
            Mat dilation = new Mat();
            Cv2.Dilate(binary, dilation, element);
 
            Mat cannyDst = new Mat();
            Cv2.Canny(dilation, cannyDst, 150, 200);
 
            Mat houghDst = new Mat();
            mat.CopyTo(houghDst);
 
            LineSegmentPolar[] lineing = Cv2.HoughLines(cannyDst, 1, Cv2.PI / 180, 110, 0, 0);
            Scalar color = new Scalar(0, 255, 255);
 
            double meanAngle = 0.0;
            int numCnt = 0;
 
            for (int i = 0; i < lineing.Length; i++)
            {
                double rho = lineing[i].Rho;//线长
                double theta = lineing[i].Theta;//角度
 
                OpenCvSharp.Point pt1 = new OpenCvSharp.Point();
                OpenCvSharp.Point pt2 = new OpenCvSharp.Point();
                double a = Math.Cos(theta);
                double b = Math.Sin(theta);
                double x0 = a * rho, y0 = b * rho;
 
                pt1.X = (int)Math.Round(x0 + 600 * (-b));
                pt1.Y = (int)Math.Round(y0 + 600 * a);
                pt2.X = (int)Math.Round(x0 - 600 * (-b));
                pt2.Y = (int)Math.Round(y0 - 600 * a);
 
                Cv2.Line(houghDst, pt1, pt2, color, 1, LineTypes.Link4);
 
                theta = theta * 180 / Cv2.PI - 90;
 
                meanAngle += theta;
                numCnt++;
            }
            //Cv2.ImShow("houghDst", houghDst);
 
            meanAngle /= numCnt;
            Point2f center = new Point2f(mat.Cols / 2.0f, mat.Rows / 2.0f);
 
            Mat warpDst = new Mat();
            Mat rot_mat = Cv2.GetRotationMatrix2D(center, meanAngle, 1.0);
            OpenCvSharp.Size dst_sz = new OpenCvSharp.Size(mat.Cols, mat.Rows);
 
            Cv2.WarpAffine(mat, warpDst, rot_mat, dst_sz);
 
            pictureBox2.Image = new Bitmap(warpDst.ToMemoryStream());
        }
    }
}

下载

Demo下载

相关推荐
电棍2331 小时前
工程记录:使用tello edu无人机进行计算机视觉工作(手势识别,yolo3搭载)
人工智能·计算机视觉·无人机
wan5555cn1 小时前
国产电脑操作系统与硬盘兼容性现状分析:挑战与前景评估
人工智能·笔记·深度学习·机器学习·电脑·生活
Happy coder1 小时前
【avalonia教程】11字符串格式化、avalonia自带绑定值的转换
c#·avalonia
BullSmall2 小时前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
woshihonghonga2 小时前
停止Conda开机自动运行方法
linux·人工智能·conda
海洲探索-Hydrovo4 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机4 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬6 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495647 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
倔强青铜三8 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试