C# OpenCvSharp 基于直线检测的文本图像倾斜校正

效果

代码

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
 
namespace OpenCvSharp_基于直线检测的文本图像倾斜校正
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
 
        private void button1_Click(object sender, EventArgs e)
        {
            string path = "1.jpg";
 
            pictureBox1.Image = new Bitmap(path);
            Mat mat = new Mat(path);
 
            Mat gray = new Mat(path, ImreadModes.Grayscale);
 
            Mat binary = new Mat();
            Cv2.Threshold(gray, binary, 50, 255, ThresholdTypes.BinaryInv);
 
            Mat element = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(7, 1));
 
            Mat dilation = new Mat();
            Cv2.Dilate(binary, dilation, element);
 
            Mat cannyDst = new Mat();
            Cv2.Canny(dilation, cannyDst, 150, 200);
 
            Mat houghDst = new Mat();
            mat.CopyTo(houghDst);
 
            LineSegmentPolar[] lineing = Cv2.HoughLines(cannyDst, 1, Cv2.PI / 180, 110, 0, 0);
            Scalar color = new Scalar(0, 255, 255);
 
            double meanAngle = 0.0;
            int numCnt = 0;
 
            for (int i = 0; i < lineing.Length; i++)
            {
                double rho = lineing[i].Rho;//线长
                double theta = lineing[i].Theta;//角度
 
                OpenCvSharp.Point pt1 = new OpenCvSharp.Point();
                OpenCvSharp.Point pt2 = new OpenCvSharp.Point();
                double a = Math.Cos(theta);
                double b = Math.Sin(theta);
                double x0 = a * rho, y0 = b * rho;
 
                pt1.X = (int)Math.Round(x0 + 600 * (-b));
                pt1.Y = (int)Math.Round(y0 + 600 * a);
                pt2.X = (int)Math.Round(x0 - 600 * (-b));
                pt2.Y = (int)Math.Round(y0 - 600 * a);
 
                Cv2.Line(houghDst, pt1, pt2, color, 1, LineTypes.Link4);
 
                theta = theta * 180 / Cv2.PI - 90;
 
                meanAngle += theta;
                numCnt++;
            }
            //Cv2.ImShow("houghDst", houghDst);
 
            meanAngle /= numCnt;
            Point2f center = new Point2f(mat.Cols / 2.0f, mat.Rows / 2.0f);
 
            Mat warpDst = new Mat();
            Mat rot_mat = Cv2.GetRotationMatrix2D(center, meanAngle, 1.0);
            OpenCvSharp.Size dst_sz = new OpenCvSharp.Size(mat.Cols, mat.Rows);
 
            Cv2.WarpAffine(mat, warpDst, rot_mat, dst_sz);
 
            pictureBox2.Image = new Bitmap(warpDst.ToMemoryStream());
        }
    }
}

下载

Demo下载

相关推荐
YJlio28 分钟前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
RoboWizard1 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
合作小小程序员小小店1 小时前
桌面开发,在线%医院管理%系统,基于vs2022,c#,winform,sql server数据
开发语言·数据库·sql·microsoft·c#
霍格沃兹测试开发学社-小明1 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇1 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
xwill*1 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
合作小小程序员小小店1 小时前
桌面开发,下午茶甜品管理系统开发,基于C#,winform,sql server数据库
开发语言·数据库·sql·microsoft·c#
网安INF1 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
陈奕昆1 小时前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追1 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习