论文笔记:AttnMove: History Enhanced Trajectory Recovery via AttentionalNetwork

AAAI 2021

1 intro

1.1 背景

  • 将用户稀疏的轨迹数据恢复至细粒度的轨迹数据是十分重要的
  • 恢复稀疏轨迹数据至细粒度轨迹数据是非常困难的
    • 已观察到的用户位置数据十分稀疏,使得未观察到的用户位置存在较多的不确定性
    • 真实数据中存在大量噪声,如何有效的挖掘周期性规律存在一定困难
    • 经常在历史轨迹中被访问的地点并不一定会是目标时间窗缺失的地点,如何利用用户历史上的位置数据是另一个挑战

1.2 论文思路

  • 提出了一个基于注意力机制的神经网络结构AttnMove用以恢复用户的移动位置
  • 主要从以下三个方面着手解决数据稀疏问题
    • 为了获取用户移动特征及推测缺失数据中最有可能访问的地点,本文利用轨迹内注意力机制设计了一个当前处理器用以初步填补缺失位置
    • 利用另一个轨迹内注意力 机制设计了一个历史处理器用以挖掘不同历史轨迹的周期性特征
    • 为了融合当前处理器以及历史处理器提取出来的特征并预测用户缺失地点,本文提出了一个基于轨迹间注意力地点生成注意力 机制的轨迹恢复模块
      • 轨迹间注意力机制------用于生成历史轨迹对于当前移动状态影响的权重
      • 地点生成注意力机制------用于考虑时空约束

2 问题定义

  • 轨迹:一个用户一天内按时间顺序的活动位置序列
      • 表示用户u在第n天第t个时间间隙所处的位置
      • 如果用户在t个时间间隙的位置信息未被观察到,则为空
    • 为用户当前轨迹,为用户u的历史轨迹

本文将轨迹恢复问题定义为,给定一个用户当前轨迹及历史轨迹,恢复当前轨迹中的缺失位置信息,用以重建当前轨迹

3 模型

4 实验结果

4.1 数据

  • 分别在Tencent及Geolife两个数据集上进行了实验。
  • 将北京地区划分成10655个格子,每个格子平均256平方米,每条轨迹的时间间隙设定为30分钟

4.2 结果

MAP是平均Precision

相关推荐
m0_6501082420 小时前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2
提娜米苏21 小时前
[论文笔记] End-to-End Audiovisual Fusion with LSTMs
论文阅读·深度学习·lstm·语音识别·论文笔记·多模态
m0_6501082421 小时前
DiffusionDrive:面向端到端自动驾驶的截断扩散模型
论文阅读·扩散模型·端到端自动驾驶·阶段扩散策略·高级联扩散解码器·cvpr2025
提娜米苏1 天前
[论文笔记] 基于 LSTM 的端到端视觉语音识别 (End-to-End Visual Speech Recognition with LSTMs)
论文阅读·深度学习·计算机视觉·lstm·语音识别·视觉语音识别
m0_650108241 天前
BEVDet:鸟瞰图视角下的高性能多相机 3D 目标检测
论文阅读·bevdet·bev视角·3d目标检测范式·多任务统一框架·bev语言分割
STLearner1 天前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
youcans_2 天前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
m0_650108242 天前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
胆怯的ai萌新2 天前
论文阅读《Audit Games with Multiple Defender Resources》
论文阅读
墨绿色的摆渡人2 天前
论文笔记(一百零六)RynnVLA-002: A Unified Vision-Language-Action and World Model
论文阅读