大数据毕业设计选题推荐-生产大数据平台-Hadoop-Spark-Hive

作者主页 :IT毕设梦工厂✨

个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。

☑文末获取源码☑
精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

一、前言

随着工业化进程的加速和信息化技术的广泛应用,生产大数据平台的建设成为了制造业转型的关键。基于大数据的生产大数据平台,旨在通过数据驱动的决策,提升生产效率,优化资源配置,增强企业的竞争力。本课题源于此背景,旨在构建一个便捷、可靠、实时的生产大数据平台,以满足现代制造业的需求。

尽管现有的生产管理系统在一定程度上可以实现生产统计、生产批次进度管理和生产线作业进度管理等功能,但它们往往存在一些问题。例如,对数据的处理和分析不够准确,无法提供实时的生产信息;系统之间的数据交互不流畅,导致信息孤岛现象严重;另外,缺乏对异常情况的及时处理机制,使得生产过程中的问题无法得到及时解决。这些问题都迫切需要一个更加完善、更加智能的生产大数据平台来解决。

本课题旨在构建一个基于大数据的生产大数据平台,旨在实现以下目标:

提高生产统计的准确性和实时性,为管理层提供可靠的决策依据;

实现生产批次进度和生产线作业进度的实时监控,提高生产效率;

通过对生产数据的分析和挖掘,发现生产过程中的潜在问题,预防和减少生产事故的发生;

提供一个统一的、可扩展的数据管理平台,以实现生产数据的共享和交互。

本课题的研究意义在于通过构建一个基于大数据的生产大数据平台,实现对生产过程的全局把控和精细化管理。这不仅可以提高生产效率,降低生产成本,还可以提高企业的竞争力,推动制造业的数字化转型。同时,该平台也可以为管理层提供更加准确的生产数据分析结果,帮助其制定更加科学、合理的决策。此外,该平台还可以为生产线工人提供更加便捷、实时的生产信息,帮助他们更好地了解和掌握生产进度和生产状况。本课题的研究成果将有助于推动工业4.0的实施和发展。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 生产大数据平台界面展示:



四、部分代码设计

  • 大数据项目实战-代码参考:
java(贴上部分代码) 复制代码
def sqliteObject_to_list_h(cur, SQLsatement):
    hxy = cur.execute(SQLsatement)
    cmy = []
    for i in hxy:
        temp1 = []
        for ii in i:
            temp1.append(ii)
        cmy.append(temp1)
    return cmy


def sqliteObject_to_list_s(cur, r, SQLsatement):
    hxy = cur.execute(SQLsatement)
    cmy = []
    for i in range(r):
        cmy.append([])
    for i in hxy:
        num = 0
        for ii in i:
            cmy[num].append(ii)
            num = num + 1
    return cmy


def sqliteObject_to_list_a(cur, SQLsatement):
    hxy = cur.execute(SQLsatement)
    cmy = []
    for i in hxy:
        cmy.append(i[0])
    return cmy


def sqliteObject_to_list_n(cur, SQLsatement):
    hxy = cur.execute(SQLsatement)
    cmy = ''
    for i in hxy:
        cmy = i[0]
    return cmy


def db_open():
    con = sqlite3.connect(DATABASE_PATH)
    cur = con.cursor()
    return con, cur


def db_close(con, cur):
    cur.close()
    con.close()
java(贴上部分代码) 复制代码
def parse1(time):
    start_time = time[0:10]
    stop_time = time[10:]

    table = zfh(start_time, stop_time)

    time = [start_time, stop_time]

    return render_template('down_and_fault/parse/template_parse.html', time=time, table=table)


@_parse.route('/parse/ajax', methods=['POST'])
def parse2():
    start_time = request.form['start']
    stop_time = request.form['stop']
    table = zfh(start_time, stop_time)

    return render_template('down_and_fault/parse/parse.html', table=table)


def zfh(start_time, stop_time):
    con, cur = db_open()

    # 日期范围限制
    hxy_r = f'''日期 >= "{start_time}" and 日期 <= "{stop_time}"'''

    # 返回日期横坐标数组
    time = sqliteObject_to_list_a(cur, f'''
        select distinct 日期 from parse where {hxy_r}
    ''')
    # 返回机组数据
    crew = sqliteObject_to_list_a(cur, f'''
        select distinct 机组 from parse where {hxy_r}
    ''')

    # 表格内容顺序,机组编号,成材率,人均吨钢,吨电耗,单位产量,吨备件

    table = sqliteObject_to_list_h(cur, f'''
        select 机组,ifnull(ROUND(sum(正品)/sum(原料),2),''),ifnull(ROUND(sum(正品)/sum(人数),2),''),ifnull(ROUND(sum(耗电)/sum(正品),2),''),ifnull(ROUND(sum(正品)/sum(开机),2),''),ifnull(ROUND(sum(备件金额)/sum(正品),2),'')
        from parse2
        where {hxy_r}
        GROUP BY 机组
    ''')

    # # 图表内容顺序 人均吨钢,吨电耗,单位产量 吨备件和成材率不显示趋势,直接看最上面的总量即可
    # # 图表的title文字,同时也可用于搜索
    # pic_name = ['人均吨钢', '吨电耗', '单位产量']
    # for i in pic_name:
    #     temp = sqliteObject_to_list_h(cur, f'''
    #     select 机组,{i}
    #     from parse1
    #     where {hxy_r}
    #     GROUP BY 机组
    # ''')
    #
    #
    #
    #
    #
    # hxy1 = sqliteObject_to_list_h(cur, f'''
    #     select 机组,ROUND(sum(人均吨钢),2),ROUND(sum(吨电耗),2),ROUND(sum(单位产量),2),ROUND(sum(吨备件),2)
    #     from parse1
    #     where {hxy_r}
    #     GROUP BY 机组
    # ''')
    #
    # hxy2 = sqliteObject_to_list_a(cur, f'''
    #     select 机组,ROUND(sum(正品)/sum(原料),2)
    #     from parse
    #     where {hxy_r}
    #     GROUP BY 机组
    # ''')


    # 每日趋势区域

    db_close(con, cur)
    return table

五、论文参考

  • 计算机毕业设计选题推荐-生产大数据平台-论文参考:

六、系统视频

生产大数据平台-项目视频:

大数据毕业设计选题推荐-生产大数据平台-Hadoop

结语

大数据毕业设计选题推荐-生产大数据平台-Hadoop-Spark-Hive

大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关推荐
AI量化投资实验室38 分钟前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
SelectDB1 小时前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据分析
TMT星球1 小时前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
Dipeak数巅科技3 小时前
数巅科技连续中标大模型项目 持续助力央国企数智化升级
大数据·人工智能·数据分析
Ray.19983 小时前
Flink 的核心特点和概念
大数据·数据仓库·数据分析·flink
lisacumt3 小时前
【kerberos】使用keytab文件,kerberos认证工具类 scala版本
hadoop·scala
极客先躯3 小时前
如何提升flink的处理速度?
大数据·flink·提高处理速度
BestandW1shEs3 小时前
快速入门Flink
java·大数据·flink
MasterNeverDown5 小时前
WPF 使用iconfont
hadoop·ui·wpf
速融云6 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造