数据挖掘:关联规则,异常检测,挖掘的标准流程,评估指标,误差,聚类,决策树

数据挖掘:关联规则

2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开
测开的话,你就得学数据库,sql,oracle,尤其sql要学,当然,像很多金融企业、安全机构啥的,他们必须要用oracle数据库
这oracle比sql安全,强大多了,所以你需要学习,最重要的,你要是考网络警察公务员,这玩意你不会就别去报名了,耽误时间!
与此同时,既然要考网警之数据分析应用岗,那必然要考数据挖掘基础知识,今天开始咱们就对数据挖掘方面的东西好生讲讲 最最最重要的就是大数据,什么行测和面试都是小问题,最难最最重要的就是大数据技术相关的知识笔试


### 文章目录

  • [数据挖掘:关联规则](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [@[TOC](文章目录)](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [关联规则](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [异常检测](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [数据挖掘的标准流程](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [数据挖掘的经典算法](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [训练误差和泛华误差](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [分类算法评估指标:hold-out method](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [聚类方法](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)
  • [总结](#文章目录 数据挖掘:关联规则 @TOC 关联规则 异常检测 数据挖掘的标准流程 数据挖掘的经典算法 训练误差和泛华误差 分类算法评估指标:hold-out method 聚类方法 总结)

关联规则

如果相关性很大,那就可以去掉其中一个属性


异常检测

数据挖掘的标准流程





这些不仅是理论,更是实际业务会遇到的东西




NLP



长尾问题

数据挖掘的经典算法

这些可能会考的

去年就考了聚类哦

TP:实际为正,预测为正

FP:实际为负,预测为正

FN:实际为正,预测为负

TN:实际为负,预测为负

准确率acc,是TP和TN的在所有情况中的占比

recall ,数据中所有正类中,真正被预测为正类的比例。就是被真的召回的正类比例

precise ,在所有被预测为正类中,实际正类的比例【精确是正类的】这俩别混了

ROC是pr的曲线

检测出来了,但是你也不能误报

往往希望,recall高一点,而误报也要小

误报了

误报率是负样本认为正了

召回是1000个中的5个,好low

训练误差和泛华误差

分类算法评估指标:hold-out method

train和test,随机分组的交叉验证

k-fold,k组,但是每次k-1个为训练集,而剩下一组为训练集

轮番高k次

k一般是10,叫十指交叉验证

留一验证

当数据量很小,就留一个样本作为测试集

分组,组元素个数为1

聚类方法

先了解,后面会详细讲解的

看层次





Nt就是正类

Ntk是确实是真的正类

离差

Ck中的i与中心u的距离

l簇和u簇的中心距离,越远越好

C4.5算法

开始具体的算法了


总结

提示:重要经验:

1)

2)学好oracle,即使经济寒冬,整个测开offer绝对不是问题!同时也是你考公网络警察的必经之路。

3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。

相关推荐
CS创新实验室15 小时前
正态分布的深入学习:从数学发现到自然法则的演变
学习·数据挖掘·数据分析·统计学·正态分布
duyinbi751717 小时前
YOLO11-MAN:多品种植物叶片智能识别与分类详解
人工智能·分类·数据挖掘
dear_bi_MyOnly17 小时前
数据分析常用操作汇总
大数据·python·数据挖掘·数据分析·学习方法
龙腾AI白云17 小时前
10分钟了解向量数据库(4)
人工智能·数据挖掘
lechcat17 小时前
多角色协同巡检流程设计技术教程
大数据·数据库·数据挖掘
FL162386312917 小时前
七十四种不同鸟类图像分类数据集3995张74类别已划分好训练验证测试集
人工智能·分类·数据挖掘
小王毕业啦17 小时前
2024年-全国地级市之间地理距离矩阵数据
大数据·人工智能·数据挖掘·数据分析·社科数据·实证数据·地理距离矩阵
数智大号18 小时前
艾利特×迈幸机器人:引领智能操作新范式,开启具身智能新纪元
人工智能·数据挖掘
Dev7z19 小时前
基于YOLO11的车辆品牌与类型识别系统设计与实现(数据集+UI界面+训练代码+数据分析)
数据挖掘·数据分析·yolov11·车型分类
yumgpkpm19 小时前
Cloudera CDH5、CDH6、CDP7现状及替代方案
数据库·人工智能·hive·hadoop·elasticsearch·数据挖掘·kafka