自动驾驶学习笔记(八)——路线规划

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

《自动驾驶新人之旅》免费课程---> 传送门

《Apollo Beta宣讲和线下沙龙》免费报名--->传送门

文章目录

前言

路线规划

路由元素

路径搜索

最优计算

实例

Tips

总结


前言

见《自动驾驶学习笔记(一)------Apollo平台

见《自动驾驶学习笔记(二)------Apollo入门

见《自动驾驶学习笔记(三)------场景设计

见《自动驾驶学习笔记(四)------变道绕行仿真

见《自动驾驶学习笔记(五)------绕行距离调试

见《自动驾驶学习笔记(六)------Apollo安装

见《自动驾驶学习笔记(七)------感知融合

路线规划

路线规划的目标是利用地图数据和实时交通信息,找到从A到B的最佳路线。

路由元素

为了便于开发查找路径的算法,首先需要将地图转化为由节点和边缘组成的数据结构,节点代表路段,边缘代表路段之间的连接,如下图所示:

路径搜索

如下图所示,搜索从A到B的路径

第一步,查找A相邻的节点,有8个候选节点1~8

第二步,查找1~8相邻的节点,有13个候选节点a~m。

这时就出现了21条候选路径:

A->1->d

A->1->e

A->1->f

A->2->b

A->2->c

A->2->d

A->3->a

A->3->b

A->3->c

A->5->k

A->5->l

A->5->m

A->6->j

A->6->k

A->6->i

A->7->h

A->7->i

A->7->j

A->8->f

A->8->g

A->8->h

第三步,在上述21条候选路径的相邻节点上继续搜索新的候选节点,进而产生新的候选路径。

重复上述搜索过程,直至节点B在候选路径中出现为止。

最优计算

上述路径搜索算法,如果A至B的距离变远,或者地图的粒度变细,那么需要消耗的算力将是指数级增加的,所以就需要引入最优排序,在每一个步骤都剔除掉一些相对较差的候选路径。这里先从路径长度这一个角度来评价候选路径,每个步骤中的候选路径长度f,都有已有距离长度g和剩余距离长度h两部分组成,如下图所示:
第一步的路径长度值

第二步的路径长度值

实例

如下图所示,车辆在一个高速公路的出口,搜索到左转、直行和右转三个候选路径,分别对应不同的g值和h值,两者相加计算得到最优的路径为右转路线。

Tips

在路线规划的实际应用中,不管是路径搜索,还是最优计算,除了要考虑上述的地图数据和距离长度之外,通常还要考虑有没有市政封路、交通事故、堵车缓行、路面质量、红绿灯多少、加油充电站、停车场出入口、路桥费多少等等因素,是一个比较复杂的工程问题。

总结

以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

文中部分图片来源自网络,若有侵权,联系立删。

相关推荐
地平线开发者4 分钟前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
Coovally AI模型快速验证7 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
Swaggy T14 小时前
自动驾驶轨迹规划算法——Apollo EM Planner
人工智能·算法·自动驾驶
Monkey PilotX15 小时前
机器人“ChatGPT 时刻”倒计时
人工智能·机器学习·计算机视觉·自动驾驶
luoganttcc15 小时前
L4 级别自动驾驶 硬件架构设计
人工智能·自动驾驶·硬件架构
星创易联2 天前
车载网关助力无人配送车联网解决方案
车载系统·自动驾驶·车载以太网
地平线开发者3 天前
征程 6 | 自定义查表算子实现量化部署
算法·自动驾驶
NewCarRen3 天前
自动驾驶中安全相关机器学习功能的可靠性定义方法
安全·机器学习·自动驾驶
Monkey PilotX4 天前
把 7B 模型塞进车规级芯片:LoRA 在自动驾驶中的极限调参指南
人工智能·机器学习·自动驾驶
NewCarRen4 天前
模型驱动的自动驾驶AI系统全生命周期安全保障
人工智能·安全·自动驾驶·汽车