【scipy 基础】--图像处理

SciPy库本身是针对科学计算而不是图像处理的,只是图像处理也包含了很多数学计算,

所以Scipy也提供了一个专门的模块ndimage用于图像处理。

ndimage模块提供的功能包括输入/输出图像、显示图像、基本操作(如裁剪、翻转、旋转等)、图像过滤(如去噪、锐化等)、图像分割、分类、特征提取以及注册/配准等任务。

这个模块支持多种图像格式的读取和写入,使得对图像的处理变得方便快捷。

1. 主要功能

虽然图像处理不是Scipy的主要目的,Scipy中也提供了70多个各类图像处理函数。

类别 主要函数 说明
过滤器 包含convolve等20多个函数 各类卷积和滤波相关的计算函数
傅立叶滤波器 包含fourier_ellipsoid等4个函数 多维椭球傅里叶,高斯傅里叶等滤波器
图像插值 包含affine_transform等8个函数 图像的反射变换,移动,旋转等相关函数
图像测量 包含center_of_mass等将近20个函数 计算图像几何特征的相关函数
形态学 包含binary_closing等20多个函数 图像的侵蚀,膨胀,二元开闭运算等等

图像处理底层函数专业性较强,下面结合图片演示一些比较直观的例子。

2. 边缘检测

图像边缘检测 在计算机视觉和图像处理中是非常重要的任务之一。
边缘是图像中像素值发生显著变化的地方,它可以提供有关图像的重要信息,例如物体的轮廓、边界等。

ndimage模块中提供了多种算法来检测边缘,下面演示三种不同的边缘检测算法的效果:

(示例中所用的图片是维基百科上找的一个python logo

2.1. sobel算法

python 复制代码
import matplotlib.pyplot as plt
import cv2
from scipy import ndimage

image = plt.imread("d:/share/python-logo.png")
# 图像灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 使用索贝尔边缘检测算法
name = "sobel"
edges = ndimage.sobel(gray)

# 显示原始图像和边缘检测结果
fig, ax = plt.subplots(1, 3, figsize=(8, 4))
ax[0].imshow(image)
ax[0].set_title("原始图像")
ax[1].imshow(gray, cmap="gray")
ax[1].set_title("灰度图像")
ax[2].imshow(edges, cmap="gray")
ax[2].set_title("边缘检测({}算法)".format(name))
plt.show()

2.2. prewitt算法

代码和上面的类似,不同的部分就下面两行。

python 复制代码
# 使用prewitt边缘检测算法
name = "prewitt"
edges = ndimage.prewitt(gray)

2.3. laplace算法

上面两种算法的效果看上去很类似,laplace算法的结果看上去比上面两种效果更好一些。

python 复制代码
name = "laplace"
edges = ndimage.laplace(gray)

3. 侵蚀和膨胀

侵蚀和膨胀是最基本的两种图像形态学操作,它们的作用用来增强目标特征。

仍然使用上面的python logo图片,演示侵蚀和膨胀的操作。

python 复制代码
import matplotlib.pyplot as plt
import cv2
from scipy import ndimage

image = plt.imread("d:/share/python-logo.png")
# 图像灰度化
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 图像侵蚀
structure = ndimage.generate_binary_structure(2, 2)
erosion = ndimage.binary_erosion(image, structure)

# 图像膨胀
dilation = ndimage.binary_dilation(image, structure)

# 显示原始图像、侵蚀图像和膨胀图像
fig, ax = plt.subplots(1, 3, figsize=(8, 4))
ax[0].imshow(image, cmap="gray")
ax[0].set_title("灰度图像")
ax[1].imshow(erosion, cmap="gray")
ax[1].set_title("图像--侵蚀")
ax[2].imshow(dilation, cmap="gray")
ax[2].set_title("图像--膨胀")
plt.show()

简单来说,侵蚀操作会扩张图像中黑色的区域,反之,膨胀操作会扩张图像中白色的区域。

直观上来看的话,侵蚀变 了,膨胀变了。

4. 总结

Scipy图像模块 本质上是把图像当作数组来处理,

虽然它不是专门的图像处理库,不过它处理速度很快,且和numpy等库结合紧密,

经常处理图像的朋友可以把它当成一个辅助的工具。

相关推荐
zhousenshan19 小时前
Python爬虫常用框架
开发语言·爬虫·python
IMER SIMPLE20 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio20 小时前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换
专注API从业者20 小时前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋21 小时前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落21 小时前
Python学习之装饰器
开发语言·python·学习
XiaoMu_0011 天前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
THMAIL1 天前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
我没想到原来他们都是一堆坏人1 天前
(未完待续...)如何编写一个用于构建python web项目镜像的dockerfile文件
java·前端·python
总有刁民想爱朕ha1 天前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘